Skip to main content

Advertisement

Log in

Differential Allocation of Seed-Borne Ergot Alkaloids During Early Ontogeny of Morning Glories (Convolvulaceae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Ergot alkaloids are mycotoxins that can increase host plant resistance to above- and below-ground herbivores. Some morning glories (Convolvulaceae) are infected by clavicipitaceous fungi (Periglandula spp.) that produce high concentrations of ergot alkaloids in seeds—up to 1000-fold greater than endophyte-infected grasses. Here, we evaluated the diversity and distribution of alkaloids in seeds and seedlings and variation in alkaloid distribution among species. We treated half the plants with fungicide to differentiate seed-borne alkaloids from alkaloids produced de novo post-germination and sampled seedling tissues at the cotyledon and first-leaf stages. Seed-borne alkaloids in Ipomoea amnicola, I. argillicola, and I. hildebrandtii remained primarily in the cotyledons, whereas I. tricolor allocated lysergic acid amides to the roots while retaining clavines in the cotyledons. In I. hildebrandtii, almost all festuclavine was found in the cotyledons. These observations suggest differential allocation of individual alkaloids. Intraspecific patterns of alkaloid distribution did not vary between fungicide-treated and control seedlings. Each species contained four to six unique ergot alkaloids and two species had the ergopeptine ergobalansine. De novo production of alkaloids did not begin immediately, as total alkaloids in fungicide-treated and control seedlings did not differ through the first-leaf stage, except in I. argillicola. In an extended time-course experiment with I. tricolor, de novo production was detected after the first-leaf stage. Our results demonstrate that allocation of seed-borne ergot alkaloids varies among species and tissues but is not altered by fungicide treatment. This variation may reflect a response to selection for defense against natural enemies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahimsa-Muller MA, Markert A, Hellwig S, Knoop V, Steiner U, Drewke C, Leistner E (2007) Clavicipitaceous fungi associated with ergoline alkaloid-containing Convolvulaceae. J Nat Prod 70:1955–1960

    Article  PubMed  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Hill N, Culbreath A, Timper P, Nagabhyru P, Bacon CW (2009a) Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 99:1336–1345

    Article  CAS  Google Scholar 

  • Bacetty AA, Snook ME, Glenn AE, Noe JP, Nagabhyru P, Bacon CW (2009b) Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. J Chem Ecol 35:844–850

    Article  CAS  Google Scholar 

  • Bull JJ, Molineux IJ, Rice WR (1991) Selection of benevolence in a host-parasite system. Evolution 45:875–882

    Article  Google Scholar 

  • Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J Chem Ecol 15:169–182

    Article  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Clay K, Holah J, Rudgers JA (2005) Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A 102:12465–12470

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Beaulieu WT, Mott IW, Riet-Correa F, Gardner DR, Grum D, Pfister JA, Clay K, Marcolongo-Pereira C (2013) Production of the alkaloid swainsonine by a fungal endosymbiont of the ascomycete order Chaetothyriales in the host Ipomoea carnea. J Agric Food Chem 61:3797–3803

    Article  CAS  Google Scholar 

  • Coyle CM, Cheng JZ, O’connor SE, Panaccione DG (2010) An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 76:3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Devall MS, Thien LB (1989) Factors influencing the reproductive success of Ipomoea pes-caprae (Convolvulaceae) around the Gulf of Mexico. Am J Bot 76:1821–1831

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflied and plants—a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eich E (2008) Tryptophan-derived alkaloids. Solanaceae and Convolvulaceae: Secondary metabolites: Biosynthesis, chemotaxonomy, biological and economic significance. Springer, Berlin

    Book  Google Scholar 

  • Eich E, Eichberg D, Muller WEG (1984) Clavines—new antibiotics with cytostatic activity. Biochem Pharmacol 33:523–526

    Article  PubMed  CAS  Google Scholar 

  • Ewald PW (1987) Transmission modes and the evolution of the parasitism-mutualism continuum. Ann N Y Acad Sci 503:295–306

    Article  PubMed  CAS  Google Scholar 

  • Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant-fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347–356

    Article  PubMed  Google Scholar 

  • Flieger M, Sedmera P, Vokoun J, Ricicova A, Rehacek Z (1982) Separation of four isomers of lysergic-acid-alpha-hydroxyethylamide by liquid-chromotagrophy and their spectroscopic identification. J Chromatogr 236:453–459

    Article  CAS  Google Scholar 

  • Fortier GM, Bard N, Jansen M, Clay K (2000) Effects of tall fescue endophyte infection and population density on growth and reproduction in prairie voles. J Wildl Manag 64:122–128

    Article  Google Scholar 

  • Fox J, Weisberg S (2011) An R Companion to applied regression. Sage, Thousand Oaks

    Google Scholar 

  • Henrich W, Surbek D, Kainer F, Grottke O, Hopp H, Kiesewetter H, Koscielny J, Maul H, Schlembach D, Von Tempelhoff GF, Rath W (2008) Diagnosis and treatment of peripartum bleeding. J Perinat Med 36:467–478

    Article  PubMed  CAS  Google Scholar 

  • Herre EA (1993) Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259:1442–1445

    Article  PubMed  CAS  Google Scholar 

  • Hofmann A (2009) LSD My problem child: Reflections on sacred drugs, mysticism and science. MAPS, Sarasota

    Google Scholar 

  • Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:1841–1851

    Article  CAS  Google Scholar 

  • Jousselin E, Desdevises Y, Coeur D’Acier A (2009) Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc R Soc B 276:187–196

    Article  PubMed  Google Scholar 

  • Keeler KH (1980) Extrafloral Nectaries of Ipomoea leptophylla (Convolvulaceae). Am J Bot 67:216–222

    Article  CAS  Google Scholar 

  • Keeler KH (1991) Survivorship and recruitment in a long-lived prairie perennial, Ipomoea leptophylla (Convolvulaceae). Am Midl Nat 126:44–60

    Article  Google Scholar 

  • Koh S, Hik DS (2007) Herbivory mediates grass-endophyte relationships. Ecology 88:2752–2757

    Article  PubMed  Google Scholar 

  • Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA (2007) Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355–360

    Article  PubMed  CAS  Google Scholar 

  • Kucht S, Groß J, Hussein Y, Grothe T, Keller U, Basar S, König WA, Steiner U, Leistner E (2004) Elimination of ergoline alkaloids following treatment of Ipomoea asarifolia (Convolvulaceae) with fungicides. Planta 219:619–625

    Article  PubMed  CAS  Google Scholar 

  • Levin DA (1976) Chemical defenses of plants to pathogens and herbivores. Annu Rev Ecol Syst 7:121–159

    Article  CAS  Google Scholar 

  • Lorenz N, Haarmann T, Pazoutova S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832

    Article  PubMed  CAS  Google Scholar 

  • Mabberley DJ (1987) The plant book. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller RE, Rausher MD, Manos PS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Syst Bot 24:209–227

    Article  Google Scholar 

  • Mockaitis JM, Kivilaan A, Schulze A (1973) Studies of the loci of indole alkaloid biosynthesis and alkaloid translocation in Ipomoea violacea plants. Biochem Physiol Pflanz (BPP) 164:248–257

    CAS  Google Scholar 

  • Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiol Lett 251:9–17

    Article  PubMed  CAS  Google Scholar 

  • Panaccione DG (2010) Ergot Alkaloids. In: Hofrichter M (ed) Mycota: Industrial Applications, vol 10, 2nd edn. Springer-Verlag Berlin, Berlin, pp 195–214

    Google Scholar 

  • Panaccione DG, Tapper BA, Lane GA, Davies E, Fraser K (2003) Biochemical outcome of blocking the ergot alkaloid pathway of a grass endophyte. J Agric Food Chem 51:6429–6437

    Article  PubMed  CAS  Google Scholar 

  • Panaccione DG, Cipoletti JR, Sedlock AB, Blemings KP, Schardl CL, Machado C, Seidel GE (2006a) Effects of ergot alkaloids on food preference and satiety in rabbits, as assessed with gene-knockout endophytes in perennial ryegrass (Lolium perenne). J Agric Food Chem 54:4582–4587

    Article  PubMed  CAS  Google Scholar 

  • Panaccione DG, Kotcon JB, Schardl CL, Johnson RD, Morton JB (2006b) Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology 8:583–590

    Article  CAS  Google Scholar 

  • Panaccione DG, Ryan KL, Schardl CL, Florea S (2012) Analysis and modification of ergot alkaloid profiles in fungi. Methods Enzymol 515:267–290

    Article  PubMed  CAS  Google Scholar 

  • Panaccione DG, Beaulieu WT, Cook D (2013) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol. doi:10.1111/1365-2435.12076

    Google Scholar 

  • Plowman TC, Leuchtmann A, Blaney C, Clay K (1990) Significance of the fungus Balansia cyperi infecting medicinal species of Cyperus (Cyperaceae) from Amazonia. Econ Bot 44:452–462

    Article  Google Scholar 

  • Potter DA, Stokes JT, Redmond CT, Schardl CL, Panaccione DG (2008) Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol Exp Appl 126:138–147

    Article  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reyes E, Canto A, Rodriguez R (2009) Megacerus species (Coleoptera: Bruchidae) and their host plants in Yucatan. Rev Mex Biodivers 80:875–878

    Google Scholar 

  • Rhoades DF (1979) Evolution of plant defenses against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary metabolites. Academic, New York, pp 1–55

    Google Scholar 

  • Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51

    Article  Google Scholar 

  • Rudgers JA, Holah J, Orr SP, Clay K (2007) Forest succession suppressed by an introduced plant-fungal symbiosis. Ecology 88:18–25

    Article  PubMed  Google Scholar 

  • Ryan KL, Moore CT, Panaccione DG (2013) Partial reconstruction of the ergot alkaloid pathway by heterologous gene expression in Aspergillus nidulans. Toxins 5:445–455

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL (2010) The epichloae, symbionts of the grass subfamily pooidae. Ann Mo Bot Gard 97:646–665

    Article  Google Scholar 

  • Schardl CL, Leuchtmann A, Chung KR, Penny D, Siegel MR (1997) Coevolution by common descent of fungal symbionts (Epichloë spp.) and grass hosts. Mol Biol Evol 14:133–143

    Article  CAS  Google Scholar 

  • Schardl CL, Craven KD, Speakman S, Stromberg A, Lindstrom A, Yoshida R (2008) A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst Biol 57:483–498

    Article  PubMed  CAS  Google Scholar 

  • Schardl C, Scott B, Florea S, Zhang D (2009) Epichloë endophytes: Clavicipitaceous symbionts of grasses. In: Deising H (ed) Plant relationships, 2nd edn. Springer, Berlin, pp 275–306

    Google Scholar 

  • Schardl CL, Young CA, Faulkner JR, Florea S, Pan J (2012) Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol 5:331–344

    Article  Google Scholar 

  • Schardl CL, Young CA, Hesse U, Amyotte SG, Andreeva K, Calie PJ, Fleetwood DJ, Haws DC, Moore N, Oeser B, Panaccione DG, Schweri KK, Voisey CR, Farman ML, Jaromczyk JW, Roe BA, O’Sullivan DM, Scott B, Tudzynski P, An Z, Arnaoudova EG, Bullock CT, Charlton ND, Chen L, Cox M, Dinkins RD, Florea S, Glenn AE, Gordon A, Güldener U, Harris DR, Hollin W, Jaromczyk J, Johnson RD, Khan AK, Leistner E, Leuchtmann A, Li C, Liu J, Liu J, Liu M, Mace W, Machado C, Nagabhyru P, Pan J, Schmid J, Sugawara K, Steiner U, Takach JE, Tanaka E, Webb JS, Wilson EV, Wiseman JL, Yoshida R, Zeng Z (2013) Plant-symbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genet 9:e1003323

    Article  PubMed  CAS  Google Scholar 

  • Schultes RE (1969) Hallucinogens of plant origin. Science 163:245–254

    Article  PubMed  CAS  Google Scholar 

  • Spiering MJ, Lane GA, Christensen MJ, Schmid J (2005) Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195–202

    Article  PubMed  CAS  Google Scholar 

  • Steiner U, Leibner S, Schardl CL, Leuchtmann A, Leistner E (2011) Periglandula, a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia 103:1133–1145

    Article  PubMed  Google Scholar 

  • Tofern B, Kaloga M, Witte L, Hartmann T, Eich E (1999) Phytochemistry and chemotaxonomy of the Convolvulaceae part 8 - Occurrence of loline alkaloids in Argyreia mollis (Convolvulaceae). Phytochemistry 51:1177–1180

    Article  CAS  Google Scholar 

  • Vanheeswijck R, McDonald G (1992) Acremonium endophytes in perennial ryegrass and other pasture grasses in Australia and New Zealand. Aust J Agric Res 43:1683–1709

    Article  Google Scholar 

  • Wallwey C, Li SM (2011) Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 28:496–510

    Article  PubMed  CAS  Google Scholar 

  • White JF, Bacon CW, Hywel-Jones NL, Spatafora JW (2003) Historical perspectives: human interactions with clavicipitalean fungi. In: White JF, Bacon CW, Hywel-Jones NL, Spatafora JW (eds) Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts. Marcel Dekker, New York, NY, pp 1–15

  • White JF, Torres MS (2009) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wilson DE (1977) Ecological observations on the tropical strand plants Ipomoea pes-caprae (L.) R. Br. (Convolvulaceae) Canavalia maritima (Aubl.) Thou. (Fabaceae). Brenesia 10:31–42

    Google Scholar 

  • Zhang XX, Li CJ, Nan ZB, Matthew C (2012) Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res 52:70–78

    Article  Google Scholar 

Download references

Acknowledgments

W.T.B. acknowledges funding from an Anne S. Chatham Fellowship in Medicinal Botany from the Garden Club of America and useful discussions with Chunfeng Huang (Indiana University Department of Statistics) as well as Stephanie Dickinson and Xuefu Wang (Indiana Statistical Consulting Center). C.S.H. was supported by National Science Foundation grant DBI-0849917. Additional funding was provided by United States Department of Agriculture National Institute of Food and Agriculture grant 2012-67013-19384 to D.G.P. We thank the greenhouse staffs of Indiana University and West Virginia University as well as Christopher T. Moore for technical support. This article is published with permission of the West Virginia Agriculture and Forestry Experiment Station as scientific article number (3173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley T. Beaulieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaulieu, W.T., Panaccione, D.G., Hazekamp, C.S. et al. Differential Allocation of Seed-Borne Ergot Alkaloids During Early Ontogeny of Morning Glories (Convolvulaceae). J Chem Ecol 39, 919–930 (2013). https://doi.org/10.1007/s10886-013-0314-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0314-z

Keywords

Navigation