Skip to main content
Log in

Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants are dependent on their root systems for survival, and thus are defended from belowground enemies by a range of strategies, including plant secondary metabolites (PSMs). These compounds vary among species, and an understanding of this variation may provide generality in predicting the susceptibility of forest trees to belowground enemies and the quality of their organic matter input to soil. Here, we investigated phylogenetic patterns in the root chemistry of species within the genus Eucalyptus. Given the known diversity of PSMs in eucalypt foliage, we hypothesized that (i) the range and concentrations of PSMs and carbohydrates in roots vary among Eucalyptus species, and (ii) that phylogenetic relationships explain a significant component of this variation. To test for interspecific variation in root chemistry and the influence of tree phylogeny, we grew 24 Eucalyptus species representing two subgenera (Eucalyptus and Symphyomyrtus) in a common garden for two years. Fine root samples were collected from each species and analyzed for total phenolics, condensed tannins, carbohydrates, terpenes, and formylated phloroglucinol compounds. Compounds displaying significant interspecific variation were mapped onto a molecular phylogeny and tested for phylogenetic signal. Although all targeted groups of compounds were present, we found that phenolics dominated root defenses and that all phenolic traits displayed significant interspecific variation. Further, these compounds displayed a significant phylogenetic signal. Overall, our results suggest that within these representatives of genus Eucalyptus, more closely related species have more similar root chemistry, which may influence their susceptibility to belowground enemies and soil organic matter accrual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal AA, Salminen JP, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673

    Article  CAS  PubMed  Google Scholar 

  • Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY (2014) Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621

    Article  PubMed  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1:1–10

    Google Scholar 

  • Blomberg SP, Garland T Jr, Ives AR, Crespi B (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Borzak CL, O’Reilly-Wapstra JM, Potts BM (2015) Direct and indirect effects of marsupial browsing on a foundation tree species. Oikos 124:515–524

    Article  Google Scholar 

  • Cahill D, Bennett I, McComb J (1993) Mechanisms of resistance to Phytophthora cinnamomi in clonal, micropropagated Eucalyptus marginata. Plant Pathol 42:865–872

    Article  Google Scholar 

  • Cai Y, Gaffney SH, Lilley TH, Haslam E (1989) Carbohydrate-polyphenol complexation. In: Hemingway RW, Karchesy JJ (eds) Chemistry and significance of condensed tannins. Plenum, New York, pp. 307–322

    Chapter  Google Scholar 

  • Carrillo-Gavilán A, Moreira X, Zas R, Gonzalez-Voyer A, Vilà M, Sampedro L (2015) Phylogenetic and biogeographical patterns in defensive strategies and quantitative allocation to chemical defences in Palaearctic and Nearctic pine trees. J Biogeogr 42:684–693

    Article  Google Scholar 

  • Clark KE, Hartley SE, Johnson SN (2011) Does mother know best? The preference–performance hypothesis and parent–offspring conflict in aboveground–belowground herbivore life cycles. Ecol Entomol 36:117–124

    Article  Google Scholar 

  • Cole RA (1987) Intensity of radicle fluorescence as related to the resistance of seedlings of lettuce to the lettuce root aphid and carrot to the carrot fly. Ann Appl Biol 111:629–639

    Article  Google Scholar 

  • Cole RA, Riggall W, Morgan A (1993) Electronically monitored feeding behaviour of the lettuce root aphid (Pemphigus bursarius) on resistant and susceptible lettuce varieties. Entomol Exp Appl 68:179–185

    Article  Google Scholar 

  • Coq S, Souquet J-M, Meudec E, Cheynier V, Hättenschwiler S (2010) Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91:2080–2091

    Article  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Erb M, Huber M, Robert CA, Ferrieri AP, Machado RA, Arce CC (2013) The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. Adv Insect Physiol 45:53–95

    Article  Google Scholar 

  • Eschler B, Pass D, Willis R, Foley W (2000) Distribution of foliar formylated phloroglucinol derivatives amongst Eucalyptus species. Biochem Syst Ecol 28:813–824

    Article  CAS  PubMed  Google Scholar 

  • Eyles A, Davies NW, Mohammed C (2003) Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E. nitens. J Chem Ecol 29:881–898

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JH (2013) Linking litter decomposition of above-and below-ground organs to plant–soil feedbacks worldwide. J Ecol 101:943–952

    Article  CAS  Google Scholar 

  • Gleadow RM, Veechies AC, Woodrow IE (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific beta-glucosidases. Phytochemistry 63:699–704

    Article  CAS  PubMed  Google Scholar 

  • Graham HD (1992) Stabilization of the Prussian blue color in the determination of polyphenols. J Agric Food Chem 40:801–805

    Article  CAS  Google Scholar 

  • Hagerman AE, Butler LG (1980) Condensed tannin purification and characterization of tannin-associated proteins. J Agric Food Chem 28:947–952

    Article  CAS  PubMed  Google Scholar 

  • Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56:252–270

    Article  PubMed  Google Scholar 

  • Jackson T, Burgess T, Colquhoun I, Hardy GS (2000) Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathol 49:147–154

    Article  CAS  Google Scholar 

  • Johnson SN, Barton AT, Clark KE, Gregory PJ, McMenemy LS, Hancock RD (2011) Elevated atmospheric carbon dioxide impairs the performance of root-feeding vine weevils by modifying root growth and secondary metabolites. Glob Chang Biol 17:688–695

    Article  Google Scholar 

  • Johnson MT, Ives AR, Ahern J, Salminen JP (2014) Macroevolution of plant defenses against herbivores in the evening primroses. New Phytol 203:267–279

    Article  CAS  PubMed  Google Scholar 

  • Kile G, Hardy R, Turnbull C (1979) The association between Abantiades latipennis (Lepidoptera, family Hepialidae) and Eucalyptus obliqua and Eucalyptus regnans in Tasmania. Aust J Entomol 18:7–17

    Article  Google Scholar 

  • Kraft NJ, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff P, Christensen R (2015) lmerTest: tests in linear mixed effects models. R Package Version 2:0–29

    Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588

    Article  CAS  PubMed  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Li H, Madden J, Potts B (1995) Variation in volatile leaf oils of the Tasmanian Eucalyptus species - I. Subgenus Monocalyptus. Biochem Syst Ecol 23:299–318

    Article  CAS  Google Scholar 

  • Li H, Madden J, Potts B (1996) Variation in leaf waxes of the Tasmanian Eucalyptus species - II. Subgenus Symphyomyrtus. Biochem Syst Ecol 25:631–657

    Article  Google Scholar 

  • Ling-Lee M, Chilvers G, Ashford A (1977) A histochemical study of phenolic materials in mycorrhizal and uninfected roots of Eucalyptus fastigata Deane and Maiden. New Phytol 78:313–328

    Article  CAS  Google Scholar 

  • Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S (2012) Experimental evidence for a phylogenetic Janzen–Connell effect in a subtropical forest. Ecol Lett 15:111–118

    Article  PubMed  Google Scholar 

  • Mann AN, O’Reilly-Wapstra J, Iason G, Sanson G, Davies NW, Tilyard P, Williams D, Potts B (2012) Mammalian herbivores reveal marked genetic divergence among populations of an endangered plant species. Oikos 121:268–276

    Article  Google Scholar 

  • Matsuki M, Foley WJ, Floyd RB (2011) Role of volatile and non-volatile plant secondary metabolites in host tree selection by Christmas beetles. J Chem Ecol 37:286–300

    Article  CAS  PubMed  Google Scholar 

  • McKiernan AB, O’Reilly-Wapstra JM, Price C, Davies NW, Potts BM, Hovenden MJ (2012) Stability of plant defensive traits among populations in two Eucalyptus species under elevated carbon dioxide. J Chem Ecol 38:204–212

  • McKiernan AB, Hovenden MJ, Brodribb TJ, Potts BM, Davies NW, O’Reilly-Wapstra JM (2014) Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environ Exp Bot 105:55–64

    Article  CAS  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2008) An AFLP marker approach to lower-level systematics in Eucalyptus (Myrtaceae). Am J Bot 95:368–380

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Foley WJ (2005) Tree use by koalas in a chemically complex landscape. Nature 435:488–490

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Foley WJ, Wallis IR, Cowling A, Handasyde KA (2005) Eucalyptus foliar chemistry explains selective feeding by koalas. Biol Lett 1:64–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutabaruka R, Hairiah K, Cadisch G (2007) Microbial degradation of hydrolysable and condensed tannin polyphenol–protein complexes in soils from different land-use histories. Soil Biol Biochem 39:1479–1492

    Article  CAS  Google Scholar 

  • Northup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229

    Article  CAS  Google Scholar 

  • O’Reilly-Wapstra J, McArthur C, Potts B (2004) Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Funct Ecol 18:677–684

    Article  Google Scholar 

  • O’Reilly-Wapstra JM, Potts BM, McArthur C, Davies NW (2005a) Effects of nutrient variability on the genetic-based resistance of Eucalyptus globulus to a mammalian herbivore and on plant defensive chemistry. Oecologia 142:597–605

    Article  PubMed  Google Scholar 

  • O’Reilly-Wapstra JM, Potts BM, Mcarthur C, Davies NW, Tilyard P (2005b) Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in an Eucalyptus species. J Chem Ecol 31:357–375

    Article  PubMed  Google Scholar 

  • O’Reilly-Wapstra JM, Humphreys JR, Potts BM (2007) Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J Chem Ecol 33:1876–1884

    Article  PubMed  Google Scholar 

  • Orozco-Aceves M, Standish RJ, Tibbett M (2015) Long-term conditioning of soil by plantation eucalypts and pines does not affect growth of the native jarrah tree. For Ecol Manag 338:92–99

    Article  Google Scholar 

  • Page DE, Close D, Beadle CL, Wardlaw TJ, Mohammed CL (2013) Seasonal dynamics in understorey abundance and carbohydrate concentration in relation to browsing and bark stripping of Tasmanian Pinus radiata plantations. For Ecol Manag 296:98–107

    Article  Google Scholar 

  • Paradis E, Blomberg S, Bolker B, Claude J, Cuong HS, Desper R, Didier G, Durand B, Dutheil J, Gascuel O (2012) Package ‘ape’: Analyses of phylogenetics and evolution. R package Version 3.4 4

  • Pearse IS, Hipp AL (2009) Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. Proc Natl Acad Sci U S A 106:18097–18102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podger F, Batini F (1971) Susceptibility to Phytophthora cinnamomi root-rot of thirty six species of Eucalyptus. Aust Forest Res 5:9–20

    Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1985) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    Article  Google Scholar 

  • Potts BM, Sandhu KS, Wardlaw T, Freeman J, Li H, Tilyard P, Park RF (2016) Evolutionary history shapes the susceptibility of an island tree flora to an exotic pathogen. For Ecol Manag 368:183–193

    Article  Google Scholar 

  • Rasmann S, Agrawal AA (2008) In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol 146:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmann S, Agrawal AA (2011) Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). Am Nat 177:728–737

    Article  PubMed  Google Scholar 

  • Reinhart KO, Wilson GW, Rinella MJ (2012) Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol Lett 15:689–695

    Article  PubMed  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:http://www.R-project.org/.

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2015) Package ‘MASS’. R Package Version 7:3–45

    Google Scholar 

  • Sayad E, Hosseini S, Hosseini V, Salehe-Shooshtari M (2012) Soil macrofauna in relation to soil and leaf litter properties in tree plantations. J For Sci 58:170–180

    Google Scholar 

  • Schweitzer JA, Bailey JK, Rehill BJ, Martinsen GD, Hart SC, Lindroth RL, Keim P, Whitham TG (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7:127–134

    Article  Google Scholar 

  • Schweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Hagerman AE, Wooley SC, Hart SC (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020

    Article  CAS  Google Scholar 

  • Senior J, Schweitzer J, O’Reilly-Wapstra J, Chapman S, Steane D, Langley A, Bailey J (2013) Phylogenetic responses of forest trees to global change. PLoS One 8:e60088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59:206–224

    Article  PubMed  Google Scholar 

  • Stevenson PC, Muyinza H, Hall DR, Porter EA, Farman DI, Talwana H, Mwanga RO (2009) Chemical basis for resistance in sweetpotato Ipomoea batatas to the sweetpotato weevil Cylas puncticollis. Pure Appl Chem 81:141–151

    Article  CAS  Google Scholar 

  • Tedersoo L, Mett M, Ishida TA, Bahram M (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol 199:822–831

    Article  PubMed  Google Scholar 

  • Tippett J, Hill T, Shearer B (1985) Resistance of Eucalyptus spp. to invasion by Phytophthora cinnamomi. Aust J Bot 33:409–418

    Article  Google Scholar 

  • van Dam NM (2009) Belowground herbivory and plant defenses. Annu Rev Ecol Evol Syst 40:373–391

    Article  Google Scholar 

  • Vannette RL, Rasmann S (2012) Arbuscular mycorrhizal fungi mediate below-ground plant-herbivore interactions: a phylogenetic study. Funct Ecol 26:1033–1042

    Article  Google Scholar 

  • Wardle D, Bonner K, Barker G (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595

    Article  Google Scholar 

  • Wilcken CF, Raetano CG, Forti LC (2002) Termite pests in Eucalyptus forests of Brazil. Sociobiology 40:179–190

    Google Scholar 

  • Wingfield M, Slippers B, Hurley B, Coutinho T, Wingfield B, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For 70:139–144

    Google Scholar 

  • Wurst S, Wagenaar R, Biere A, Van der Putten WH (2010) Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant Soil 329:117–126

    Article  CAS  Google Scholar 

  • Yang J, Ci X, Lu M, Zhang G, Cao M, Li J, Lin L (2014) Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots. J Plant Ecol 7:115–125

    Article  Google Scholar 

Download references

Acknowledgments

We thank Hugh Fitzgerald for assistance in the sampling of root material and assistance with laboratory work. This research was funded by an Australian Research Council Discovery Grant (number: DP120102889) and further supported by an Australian Research Council Linkage Grant (number: LP120200380).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Senior.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senior, J.K., Potts, B.M., Davies, N.W. et al. Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species. J Chem Ecol 42, 1086–1097 (2016). https://doi.org/10.1007/s10886-016-0750-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0750-7

Keywords

Navigation