Skip to main content
Log in

Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Benzoic acids (BAs) are important structural elements in a wide variety of essential compounds and natural products, and play crucial roles in plant fitness. BA is a precursor of diverse benzenoid compounds, including the hormone salicylic acid (SA) and the aglycone moiety of salicin, which is particularly important in the Salicaceae family. The biosynthetic pathways leading to BA formation in plants are largely unknown. Recently, the CoA-dependent β-oxidative BA biosynthesis pathway, which occurs in peroxisomes, has been characterized in petunia. The core of this pathway is cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → benzoyl-CoA. Here, we used 454 pyrosequencing to analyze the transcriptome of Populus davidiana and isolate putative genes involved in BA biosynthesis. De novo assembly generated 57,322 unique sequences, including 15,217 contigs and 42,105 singletons. From the unique sequences, we selected six genes exhibiting high similarity to genes encoding L-phenylalanine ammonia lyase, cinnamate:CoA ligase, cinnamoyl-CoA hydratase-dehydrogenase, 3-ketoacyl-CoA thiolase, benzoyl-CoA:benzyl alcohol O-benzoyltransferase, and benzaldehyde dehydrogenase. Each of these enzymes might be involved in BA biosynthesis. Real-time PCR (qPCR) analysis revealed that these six genes were highly transcribed in the aerial organs of P. davidiana, particularly in leaves. Treating the leaves of in vitro cultured plants with methyl jasmonate (MeJA) strongly enhanced the mRNA accumulation of all 6 genes, and this treatment also clearly enhanced the accumulation of BA, SA, salicyl alcohol, benzyl alcohol, benzyl benzoate, and benzaldehyde but not salicin. Our study shows that P. davidiana may possess a CoA-dependent β-oxidative BA synthesis pathway. We also identified a relationship between the transcription of these genes and the accumulation of benzenoids, including BA and SA, which are highly responsive to the defense signaling molecule (MeJA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BALDH:

Benzaldehyde dehydrogenase

BEBT:

Benzoyl-CoA:salicyl alcohol O-benzoyltransferase

CHD:

Cinnamoyl-CoA hydratase-dehydrogenase

CNL:

Cinnamate:CoA ligase

KAT:

3-ketoacyl-CoA thiolase

MeJA:

Methyl jasmonate

PAL:

Phenylalanine ammonia lyase

References

  • Abd El-Mawla AM, Beerhues L (2002) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta 214:727–733

    Article  CAS  PubMed  Google Scholar 

  • Ariani A, Di Baccio D, Romeo S, Lombardi L, Andreucci A, Lux A, Horner DS, Sebastiani L (2015) RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc. PLoS One 10:e0117571

    Article  PubMed  PubMed Central  Google Scholar 

  • Babst BA, Harding SA, Tsai CJ (2010) Biosynthesis of phenolic glycosides from phenylpropanoid and benzenoid precursors in Populus. J Chem Ecol 36:286–297

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci U S A 95:8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Kessler A, Halitschke R (2002) Volatile signaling in plant-plant-herbivore interactions: what is real? Curr Opin Plant Biol 5:351–354

    Article  CAS  PubMed  Google Scholar 

  • Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, Orlova I, Gang DR, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72:1497–1509

    Article  CAS  PubMed  Google Scholar 

  • Chedgy RJ, Köllner TG, Constabel CP (2015) Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis. Phytochemistry 113:149–159

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Ji L, Wang J, Jin H, Yang X, Rao P, Gao K, Liao W, Ye M, An X (2017) Dynamic changes in the transcriptome of Populus hopeiensis in response to abscisic acid. Sci Rep 7:42708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Jarvis AP, Schaaf O, Oldham NJ (2000) 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acid and salicylic acid but benzaldehyde is not. Planta 212:119–126

    Article  CAS  PubMed  Google Scholar 

  • Klempien A, Kaminaga Y, Qualley A, Nagegowda DA, Widhalm JR, Orlova I, Shasany AK, Taguchi G, Kish CM, Cooper BR, D'Auria JC, Rhodes D, Pichersky E, Dudareva N (2012) Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Plant Cell 24:2015–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong JQ (2015) Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv 5:62587–62603

    Article  CAS  Google Scholar 

  • Koo YB, Yeo JK, Woo KS, Kim TS (2007) Selection of superior clones by stability analysis of growth performance in Populus davidiana Dode at age 12. Silvae Genet 56:93–100

    Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Long MC, Nagegowda DA, Kaminaga Y, Ho KK, Kish CM, Schnepp J, Sherman D, Weiner H, Rhodes D, Dudareva N (2009) Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant J 59:256–265

    Article  CAS  PubMed  Google Scholar 

  • McCown BH, Lloyd G (1981) Woody plant medium (WPM) – a mineral nutrient formulation for microculture of woody plant species. Hortscience 16:453–453

    Google Scholar 

  • Misztal PK, Hewitt CN, Wildt J, Blande JD, Eller AS, Fares S, Gentner DR, Gilman JB, Graus M, Greenberg J, Guenther AB, Hansel A, Harley P, Huang M, Jardine K, Karl T, Kaser L, Keutsch FN, Kiendler-Scharr A, Kleist E, Lerner BM, Li T, Mak J, Nölscher AC, Schnitzhofer R, Sinha V, Thornton B, Warneke C, Wegener F, Werner C, Williams J, Worton DR, Yassaa N, Goldstein AH (2015) Atmospheric benzenoid emissions from plants rival those from fossil fuels. Sci Rep 5:12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1:69–79

    CAS  Google Scholar 

  • Orlova I, Marshall-Colon A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee JJ, Peer WA, Murphy AS, Rhodes D, Pichersky E, Dudareva N (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palo RT (1984) Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520

    Article  CAS  PubMed  Google Scholar 

  • Qualley AV, Widhalm JR, Adebesin F, Kish CM, Dudareva N (2012) Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc Natl Acad Sci U S A 109:16383–16388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai HS, Mock KE, Richardson BA, Cronn RC, Hayden KJ, Wright JW, Knaus BJ, Wolf PG (2013) Transcriptome characterization and detection of gene expression differences in aspen (Populus tremuloides). Tree Genet Genomes 9:1031–1041

    Article  Google Scholar 

  • Ruuhola T, Tikkanen OP, Tahvanainen J (2001) Differences in host use efficiency of larvae of a generalist moth Operophtera brumata (Lepidoptera: Geometridae) on three chemically divergent Salix species. J Chem Ecol 27:1–21

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CJ, Harding SA, Tschaplinski TJ, Lindroth RL, Yuan Y (2006) Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol 172:47–62

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596

    Article  CAS  PubMed  Google Scholar 

  • Van Moerkercke A, Schauvinhold I, Pichersky E, Haring MA, Schuurink RC (2009) A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J 60:292–302

    Article  PubMed  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97

    Article  CAS  PubMed  Google Scholar 

  • Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJ (2012) Phylloquinone (vitamin K(1) ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-coa. Plant J 71:205–215

    Article  CAS  PubMed  Google Scholar 

  • Yalpani N, Leon J, Lawton MA, Raskin I (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenk MH (1967) Pathways of salicyl alcohol and salicin formation in Salix purpurea L. Phytochemistry 6:245–252

    Article  Google Scholar 

  • Zhang W, Chu Y, Ding C, Zhang B, Huang C, HuZ HR, Tian Y, Su X (2014) Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes. BMC Genet 15:S7. https://doi.org/10.1186/1471-2156-15-S1-S7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (S111414 L070110) from the Post-Genome Multi-Ministry Genome Project (Ministry of Health and Welfare).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Eui Choi.

Electronic supplementary material

Fig. S1

The mass spectrometry spectra of benzaldehyde (A) at a retention time of 8.61 min, benzyl alcohol (B) at a retention time of 12.02 min, BA (C) at a retention time of 17.01, salicyl alcohol (D) at a retention time of 19.17 min, SA (E) at a retention time of 20.44 min, benzyl benzoated (F) at a retention time of 32.73 min, salicin (G) at a retention time of 52.55 min in leaf extracts of Populus davidiana. The inserts show the spectra of the authentic standards. (GIF 282 kb)

High Resolution Image (TIFF 189 kb)

Table S1

(DOCX 20 kb)

Table S2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, SB., Kim, J.Y., Han, J.Y. et al. Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment. J Chem Ecol 43, 1097–1108 (2017). https://doi.org/10.1007/s10886-017-0903-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-017-0903-3

Keywords

Navigation