Skip to main content

Advertisement

Log in

Computational Investigation of the Transport of Burning Particles

  • HEAT AND MASS TRANSFER IN COMBUSTION PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Computational modeling of the dynamics of the convective column formed by a low forest fire and of the transport of particles burning in it has been carried out. At the initial stage of formation of a thermal column, medium- and large-size particles move with the ascending air flow to its upper boundary; then they are entrained by the torroidal vortex and carried out of the combustion zone to the outer boundary of the circulation flow where they settle to the underlying surface. With increasing size of particles the maximum rise height of particles and the distance for which they are transported by the vortex flow decrease. The temperature of large particles at the moment of their landing is above the critical one, which can initiate ignition of the underlying surface and the formation of a secondary site of fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. I. Foote, S. L. M anzello, and J. Liu, Characterizing firebrand exposure during wildland–urban interface fires, in: Proc. Fire Materials 2011 Conf. (2011), pp. 479–491.

  2. R. B. Hammer, V. C. Radeloff, J. S. Fried, and S. I. Stewart, Wildland–urban interface housing growth during the 1990s in California, Oregon, and Washington, Int. J. Wildland Fire, 16, No. 3, 255–265 (2007).

    Article  Google Scholar 

  3. M. D. Flannigan, B. J. Stocks, and B. M. Wotton, Climate change and forest fires, Sci. Total Env., 262, No. 3, 221–229 (2000).

    Article  Google Scholar 

  4. J. D. Cohen, What is the Wildland Fire Threat to Homes? USDA Forest Service Gen. Tech. Rep. PSW-GTR-173 (2000), pp. 189–195.

  5. S. L. Manzello, T. G.Cleary, J. R. Shields, A. Maranghides, W. Mell, and J. C. Yang, Experimental investigation of firebrands: Generation and ignition of fuel beds, Fire Safety J., 43, No. 3, 226–233 (2008).

  6. S. L. Manzello, J. R.Shields, T. G. Cleary, A. Maranghides, W. E. Mell, J. C. Yang, Y. Hayashi, D. Nii, and T. Kurita, On the development and characterization of a firebrand generator, Fire Safety J., 43, No. 4, 258–268 (2008).

  7. E. Koo, P. J. Pagni, D. R. Weise, and J. P. Woycheese, Firebrands and spotting ignition in large-scale fires, Int. J. Wildland Fire, 19, No. 7, 818–843 (2010).

    Article  Google Scholar 

  8. V. A. Perminov and A. M. Gudov, Mathematical modeling the initiation of crown forest fires in a three-dimensional formulation, Vestn. Kemerovsk. Gos. Univ., No. 1(61), 18–24 (2015).

  9. V. A. Perminov and A. A. Shatokhin, Mathematical modeling of the heat and mass transfer processes in fires with the use of the Phoenics software, Vestn. Nauki Sibiri, No. 1(11), 34–39 (2014).

  10. A. M. Grishin, Simu laiton and Prediction of Catastrophes [in Russian], Pt. 2, Izd. TGU, Tomsk (2005).

  11. Yu. A. Gostintsev, G. M. Makhviladze, and B. V. Novozhilov, Formation of a large fire caused by radiation, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 17–25 (1992).

  12. E. Koo, R. R. Linn, P. J. Pagni, and C. B. Edminster, Modelling firebrand transport in wildfires using HIGRAD/FIRETEC, Int. J. Wildland Fire, 21, No. 4, 396–417 (2012).

    Article  Google Scholar 

  13. J.-B. Filippi, X. Pialat, and C. B. Clements, Assessment of ForeFire/Meso-NH for wildland fire/atmosphere coupled simulation of the FireFlux experiment, Proc. Combust. Institute, 34, No. 2, 2633–2640 (2013).

    Article  Google Scholar 

  14. O. V. Matvienko and V. M. Ushakov, Numerical investigation of the propagation of pollutants in the atmosphere, Vestn. Tomsk. Gos. Ped. Univ., Issue 2(30), 17–20 (2002).

  15. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical simulation of the formation of heat tornados, J. Eng. Phys. Thermophys., 81, No. 5, 897–904 (2008).

    Article  Google Scholar 

  16. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical simulation of the effect of external circulation on the structure of fire tornadoes, Izv. Vyssh. Uchebn. Zaved., Fiz., 52, No. 2, 100–106 (2009).

  17. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical modeling of gas combustion in a twisted jet and of the formation of a fiery whirlwind, J. Eng. Phys. Thermophys., 82, No. 5, C. 906–913 (2009).

  18. A. M. Grishin and O. V. Matvienko, Numerical investigation of the formation of a convective column and a fire tornado by forest fires, J. Eng. Phys. Thermophys., 87, No. 5, 1080–1093 (2014).

    Article  Google Scholar 

  19. A. M. Grishin and O. V. Matvienko, Mathematical simulation of the ecological consequences of instantaneous depressurization of containers with uranium hexafluoride, Ékol. Sist. Prib., No. 7, 54–58 (2003).

  20. V. A. Arkhipov, A. P. Berezikov, E. A. Kozlov, O. V. Matvienko, and U. M. Sheremet’eva, Modeling of the aerosol cloud propagation due to the release of liquid rocket fuels into the atmosphere, Opt. Atmos. Okeana, 17, Nos. 5–6, 488–493 (2004).

  21. C. Tarifa, P. Del Notario, and F. Moreno, On the flight paths and lifetimes of burning particles of wood, in: Proc. 10th Combust. Institute (1965), pp. 1021–1037.

  22. F. A. Albini, Spot Fire Distance from Burning Trees –– A Predictive Model, General Technical Report GTR-INT-56, USDA Forest Service, Ogden, UT (1979)

  23. F. A. Albini, Transport of firebrands by line thermals, Combust. Sci. Technol., 32, Nos. 5–6, 277–288 (1983).

  24. S. D. Tse and A. C. Fernandez-Pello, On the flight paths of metal particles and embers generated by power lines in high winds –– A potential source of wildland fires, Fire Safety J., 30, No. 4, 333–356 (1998).

    Article  Google Scholar 

  25. S. L. Manzello, S. Suzuki, and Y. Hayashi, Enabling the study of structure vulnerabilities to ignition from wind driven firebrand showers: A summary of experimental results, Fire Safety J., 54, 181–196 (2012).

    Article  Google Scholar 

  26. Mohamad El Houssami, E. Mueller, A. Filkov, J. C. Thomas, N. S. Skowronski, M. R. Gallagher, K. Clark, R. Kremens, and A. Simeoni, Experimental procedures characterizing firebrand generation in wildland fires, Fire Technol., 52, Issue 3, 731–741 (2016).

  27. V. A. Arkhipov and O. V. Matvienko, Nonstationary processes of combustion in the channel at a swirl of the gas flow and upon its termination, Fiz. Goreniya Vzryva, 35, No. 4, 33–40 (1999).

    Google Scholar 

  28. F. R. Menter, Zonal two equation k–ω turbulence models for aerodynamic flows, AIAA Paper, No. 93-2906 (1993).

  29. F. R. Menter and C. L. Rumsey, Assessment of two-equation turbulence models for transonic flows, AIAA Paper, No. 94-2343 (1994).

  30. J. Piquet, Turbulent Flows: Models and Physics, Springer, Berlin (1999).

    Book  MATH  Google Scholar 

  31. W. P. Jones and B. E. Launder, The calculation of low Reynolds number phenomena with a two-equation model of turbulence, Int. J. Heat Mass Transf., 16, 1119−1130 (1973).

    Article  Google Scholar 

  32. D. C. Wilcox, A two-equation turbulence model for wall-bounded and free-shear flows, AIAA Paper, No. 2905 (1993).

  33. F. R. Menter, M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model, in: K. Hanjalic, Y. Nagano, and M. Tummers (Eds.), Turbulence, Heat and Mass Transfer 4, Begell House, Inc. (2003), pp. 625–632.

  34. P. Bradshaw, D. H. Ferriss, and N. P. Atwell, Calculation of boundary layer development using the turbulent energy equation, J. Fluid Mech., 28, 593–616 (1967).

    Article  Google Scholar 

  35. O. V. Matvienko and A. M. Daneiko, Investigation of the shock interaction of particles in a flow, Izv. Vyssh. Uchebn. Zaved., Fiz., 56, Nos. 9–3, 190–192 (2013).

  36. A. Haider and O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technol., 58, 63–70 (1989).

    Article  Google Scholar 

  37. C. Crowe, M. Sommerfeld, and Ya. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press, Boca Raton (1998).

  38. S. Patankar, Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics [Russian translation], Énergoatomizdat, Moscow (1983).

  39. J. H. Ferziger and M. Perič, Computational Methods for Fluid Dynamics, Springer, Berlin (1996).

  40. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Longman, London (1998).

    Google Scholar 

  41. J. P. Van Doormal and G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transf., 7, 147–163 (1984).

    MATH  Google Scholar 

  42. A. E. Mudrov, Numerical Methods for PCs in Basic, Fortran, and Pascal Languages [in Russian], MP “RASKO,” Tomsk (1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 5, pp. 1328–1338, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Fil’kov, A.I. & Grishin, A.M. Computational Investigation of the Transport of Burning Particles. J Eng Phys Thermophy 89, 1315–1324 (2016). https://doi.org/10.1007/s10891-016-1494-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1494-5

Keywords

Navigation