Skip to main content
Log in

Fluorescence Dynamics of Three UV-B Sunscreens

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Polarity of the surrounding medium affects the excited states of UV-B sunscreens. Therefore understanding excited state processes in a mixed polarity model system similar to skin is essential. We report the excited state lifetimes, quantum yields, radiative and non-radiative rates of three sunscreens. Among the three UV-B sunscreens studied, octyl salicylate emits from a single excited state, while padimate O and octyl methoxy cinnamate show multiple states. The radiative rates of salicylate and cinnamate are approximately constant, while that of padimate O depends strongly on solvent. The non-radiative rates of all sunscreens vary with solvent polarity. Compared to salicylate and cinnamate, padimate O is complex to analyze because of its two emission peaks and one peak’s strong dependence on the dielectric constant. High absorbance, broad absorption peak with small fluorescence quantum yield, and low radiative rate make octyl methoxy cinnamate a superior UV-B sunscreen ingredient. The complexity in excited-state analysis shows that the lifetimes of the sunscreens are critical parameters, in addition to absorbance and quantum yield. Fluorescence lifetime substantiates the use of polystyrene nanospheres as a model host to study the photo-physical properties of sunscreen in a heterogeneous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Azevedo JS, Viana NS Jr, Soares CD (1999) UVA/UVB sunscreen determination by second-order derivative ultraviolet spectrophotometry. Farmaco 54:573–578

    Article  PubMed  CAS  Google Scholar 

  2. Maier H, Schauberger G, Brunnhofer K, Honigsmann H (2001) Change of ultraviolet absorbance of sunscreens by exposure to solarsimulated radiation. J Investig Dermatol 117:256–262

    Article  PubMed  CAS  Google Scholar 

  3. Rosenstein BS, Weinstock MA, Habib R (1999) Transmittance spectra and theoretical sun protection factors for a series of sunscreen-containing sun care products. Photodermatol Photoimmunol Photomed 15:75–80

    Article  PubMed  CAS  Google Scholar 

  4. Serpone N, Salinaro A, Emeline AV, Horikoshi S, Hidaka H, Zhao J (2002) An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochem Photobiol Sci 1:970–981

    Article  PubMed  CAS  Google Scholar 

  5. Lowe NJ (1997) Sunscreens: development, evaluation, and regulatory aspects, cosmetic science and technology series, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  6. Beyere L, Yarasi S, Loppnow GR (2003) Solvent effects on sunscreen active ingredients using Raman spectroscopy. J Raman Spectrosc 34:743–750

    Article  CAS  Google Scholar 

  7. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) In vitro and in vivo estrogenicity of uv screens. Environ Health Perspect 109:239–244

    Article  PubMed  CAS  Google Scholar 

  8. Gupta VK, Zatz JL, Rerek M (1999) Percutaneous absorption of sunscreens through micro-yucatan pig skin in vitro. Pharm Res 16:1602–1607

    Article  PubMed  CAS  Google Scholar 

  9. Krishnan R, Carr A, Blair E, Nordlund TM (2004) Optical spectroscopy of hydrophobic sunscreen molecules adsorbed to dielectric nanospheres. Photochem Photobiol 79:531–539

    Article  PubMed  CAS  Google Scholar 

  10. Krishnan R, Pradhan S, Timares L, Katiyar SK, Elmets CA, Nordlund TM (2006) Fluorescence of sunscreens adsorbed to dielectric nanospheres: parallels to optical behavior on HaCat cells and skin. Photochem Photobiol 82:1557–1565

    Article  PubMed  CAS  Google Scholar 

  11. Krishnan R, Elmets CA, Nordlund TM (2006) New method to test the effectiveness of sunscreen ingredients in a novel nano-surface skin cell mimic. Photochem Photobiol 82:1549–1556

    Article  PubMed  CAS  Google Scholar 

  12. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum, New York

    Google Scholar 

  13. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37(4):814–822

    Article  CAS  Google Scholar 

  14. Zhang CH, Chen ZB, Jiang YB (2004) Intramolecular charge transfer dual fluorescence of p-dimethylaminobenzoates. Spectrochimica Acta A 60:2729–2732

    Article  CAS  Google Scholar 

  15. Sun YP, Bowen TL, Bunker CE (1994) Formation and decay of the ethyl p-(N,N-dimethylamino)benzoate twisted intramolecular charge transfer stated in the vapor phase, supercritical fluids and room temperature solutions. J Phys Chem 98:12486–12494

    Article  CAS  Google Scholar 

  16. Kim YH, Cho DW, Yoon M (1996) Observation of hydrogen bonding effects on twisted intramolecular charge transfer of p-(N,N-dimethylamino)benzoic acid in aqueous cyclodextrin solutions. J Phys Chem 100:15670–15676

    Article  CAS  Google Scholar 

  17. Nag A, Dutta R, Chattopadhyay N, Bhattacharyya K (1989) Effect of cyclodextrine cavity size on twisted intramolecular charge transfer emission: dimethylamino benzonitrile in β-cyclodextrine. Chem Phys Lett 157:83–86

    Article  Google Scholar 

  18. Soujanya T, Saroja G, Samata A (1995) AM1 study of the twisted intramolecular charge transfer phenomenon in p-(N, N-dimethylamino)benzonitrile. Chem Phys Lett 236:503–509

    Article  CAS  Google Scholar 

  19. Hicks JM, Vandersall MT, Babarogic Z, Eisenthal KB (1985) The dynamics of barrier crossings in solution: the effect of solvent polarity dependent barrier. Chem Phys Lett 116:18–24

    Article  CAS  Google Scholar 

  20. Wang Y, Eisenthal KB (1982) Picosecond dynamics of twisted internal charge transfer phenomena. The role of solvent. J Chem Phys 77:6076–6082

    Article  CAS  Google Scholar 

  21. Jean JM, Hall KB (2000) Theoretical studies of excited state properties and transitions of 2-aminopurine in the gas phase and in solution. J Phys Chem A 104:1930–1937

    Article  CAS  Google Scholar 

  22. Cox GS, Turro NJ (1984) Methyl salicylate fluorescence as a probe of the geometry of complexation to cyclodextrins. Photochem Photobiol 40:185–188

    Article  CAS  Google Scholar 

  23. Smith KK, Kaufmann KJ (1981) Solvent dependence of the nonradiative decay rate of methyl salicylate. J Phys Chem 85:2895–2897

    Article  CAS  Google Scholar 

  24. Smith KK, Kaufmann KJ (1978) Picosecond studies of intramolecular proton transfer. J Phys Chem 82:2286–2291

    Article  CAS  Google Scholar 

  25. Friedrich DM, Wang Z, Joly AG, Peterson KA, Callis PR (1999) Ground-state proton-transfer tautomer of the salicylate anion. J Phys Chem A 103:9644–9653

    Article  CAS  Google Scholar 

  26. Artyukhov VYa, Smirnov OV (2003) Investigation of dual fluorescence in 4-dimethylamino benzonitrile. Rus Phys J 46:484–487

    Article  CAS  Google Scholar 

  27. Artyukhov VYa, Smirnov OV (2004) Dual fluorescence in donor-acceptor molecules and the effect of fluorination. Rus Phys J 47:983–987

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by a grants from NCI (CA94327) and from the University of Alabama at Birmingham (Preparing Future Faculty award and GAPF graduate fellowship, support of R. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Nordlund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, R., Nordlund, T.M. Fluorescence Dynamics of Three UV-B Sunscreens. J Fluoresc 18, 203–217 (2008). https://doi.org/10.1007/s10895-007-0264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0264-3

Keywords

Navigation