Skip to main content
Log in

Unusual Spectral Shifts of Imipramine and Carbamazepine Drugs

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The absorption and fluorescence spectra of imipramine and carbamazepine have been recorded in solvents of different polarity and β-cyclodextrin (β-CD). The inclusion complexes for both drugs are investigated by UV-visible, fluorimetry and DFT. Solvents study shows isotropic polarizability structure is present in imipramine while the amide group inhibits the above structure in carbamazepine. The band width half a maximum of carbamazepine decreased in polar solvents suggest that different species present in non-polar solvents and among that one of this species is affected in protic solvents. Both drugs form two different 1:2 inclusion complexes with β-CD. The structured longer wavelength emission in β-CD solution suggests viscosity plays major roles in the inclusion complex. This study also confirms van der Waals forces and hydrophobic interactions are the driving forces in imipramine and hydrogen bonding interactions play major roles in carbamazepine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dey JK, Warner IM (1998) J Photochem Photobiol A Chem 116:27

    Article  CAS  Google Scholar 

  2. Zhang G, Shuang S (2005) J Photochem Photobiol A Chem 169:153

    Article  CAS  Google Scholar 

  3. Borissevitch IE, Gandini SCM (1998) J Photochem Photobiol B Biol 43:112

    Article  CAS  Google Scholar 

  4. Chirvony VS, Turpin PY (1997) J Photochem Photobiol B Biol 40:154

    Article  CAS  Google Scholar 

  5. Li JF, Wei YX, Ding LH, Dong C (2003) Spectrochim Acta 59A:2759

    CAS  Google Scholar 

  6. Brahmankar DM, Sunil B (2006) Jaiswal, Biopharmaceutics and pharmacokinetics, A-Treiastise, Vallabh Prakasham Pubs., 302

  7. Chao J, Meng D, Li J, Xi H, Huang S (2004) Spectrochim Acta 60A:729

    CAS  Google Scholar 

  8. William DA, Lenke TC (2005) Foye’s principle of medicinal chemistry, 5th edition, I. Pubs. 711

  9. Carswell CI, Figgitt P (2002) Drugs 62:2471

    Article  CAS  PubMed  Google Scholar 

  10. Wei YL, Ding LH, Dong C, Niu WP, Min Shuang S (2003) Spectrochim Acta 59A:2697

    CAS  Google Scholar 

  11. Fugen G, Cuijing L (1998) Chin Pharm J 33:153

    Google Scholar 

  12. Xiying L, Yunginf Y (1997) Chim Pharm J 32:218

    Google Scholar 

  13. Manzoori JL, Amjadi M (2003) Spectrochim Acta 59A:909

    CAS  Google Scholar 

  14. Canaparo R, Mumtoni E, Zara GP, Dellapena C, Berno E, Costa M, Endi M (2000) Biomed Chromatogr 14:219

    Article  CAS  PubMed  Google Scholar 

  15. Galian RE, Veglia AV, de Rossi RH (2000) Analyst 125:1465

    Article  CAS  PubMed  Google Scholar 

  16. Escandar GM (1999) Analyst 124:587

    Article  CAS  PubMed  Google Scholar 

  17. Galian RE, Veglia AV, de Rossi RH (1998) Analyst 123:1587

    Article  CAS  PubMed  Google Scholar 

  18. Duran-Meras I, Munoz de la pena A, Salinas F, Rodriguez Caceres I (1994) Analyst 119:125

  19. Szejtli J, Osa T (1996) In: Atwood JL, Davies JE, Mac Nicol DD, Vogtle F (eds) Comprehensive supramolecular chemistry, vol. 3. Pergamon/Elsevier, Oxford

    Google Scholar 

  20. Uekama K, Hirayama F, Irie T (1998) Chem Rev 98:2045

    Article  CAS  PubMed  Google Scholar 

  21. Bilot L, Kawski A (1962) Z. Naturforsch 17A:621

    CAS  Google Scholar 

  22. Dimroth K, Reichardt C (1983) Liebigs, Ann. Chem. 661 and Anqew.Chem. 91 (1979) 119

    Google Scholar 

  23. Lippert E, Londer W, Boos H (1962) In: Mangini A (ed) Advances in molecular spectroscopy. Pergmon, Oxford, p 443

    Google Scholar 

  24. McGlynm SP, Khalil OS, Meeks JS (1976) Chem Phys Lett 39:457

    Article  Google Scholar 

  25. Kosower EM, Dodiuk H (1976) J Am Chem Soc 98:924

    Article  CAS  Google Scholar 

  26. Chandross A (1975) In Gorden M, Ware M (Eds.), Exciplex, Academic Press, New York 187

  27. Visser R, Wiesenborn PCM, Varma CAGO (1985) Chem Phys Lett 113:330

    Article  CAS  Google Scholar 

  28. Rettig W (1986) Angew Chem Int Ed Engl 25:599

    Article  Google Scholar 

  29. Day JK, Dogra SK (1994) J Phys Chem 98:3638

    Article  Google Scholar 

  30. Nayak MK, Dogra SK (2004) J Photochem Photobiol A Chem 161:169

    Article  CAS  Google Scholar 

  31. Gaplousky A, Hrdlovic P, Donovalova J, Hrnciar P (1991) J Photochem Photobiol A Chem 59:221

    Article  Google Scholar 

  32. Zhang X, Sun X-Y, Wang C-J, Jiang Y-B (2002) J Phys Chem 106:5577

    CAS  Google Scholar 

  33. Kim Y, Yoon M, Kim D (2001) J Photochem Photobiol A Chem 138:167

    Article  CAS  Google Scholar 

  34. Jiang YB (1995) J Photochem Photobiol A Chem 88:109

    Article  CAS  Google Scholar 

  35. Stalin T, Rajendiran N (2006) J Photochem Photobiol A Chem 177:144

    Article  CAS  Google Scholar 

  36. Stalin T, Rajendiran N (2006) J Mol Stru 794:35

    Article  CAS  Google Scholar 

  37. Antony Muthu Prabhu A, Rajendiran N (2009) Spectrochimica Acta 74:484

    Article  CAS  PubMed  Google Scholar 

  38. Antony Muthu Prabhu A, Rajendiran N (2010) J Fluoresc 20:43

    Article  PubMed  Google Scholar 

  39. Siva S, Rajendiran N (2009) Indian J Chem 48A:1515

    CAS  Google Scholar 

  40. Benesi A, Hildebrand JH (1949) J Am Chem Soc 71:2703

    Article  CAS  Google Scholar 

  41. Park HR, Mayer B, Wolschann P, Kohlen G (1994) J Phys Chem 98:6158

    Article  CAS  Google Scholar 

  42. Sandra S, Dogra SK (1996) J Photochem Photobiol A Chem 101:221

    Article  Google Scholar 

  43. Bhattacharya K, Chowdhury M (1993) Chem Rev 93:507

    Article  Google Scholar 

  44. Panja S, Bangal PR, Chakravorty S (2000) Chem Phys Lett 329:377

    Article  CAS  Google Scholar 

  45. Kano K, Tawiya Y, Hashimoto S (1992) J Incl Phenom 3:287

    Google Scholar 

  46. Tabushi I (1984) Tetrahedron 40:269

    Article  CAS  Google Scholar 

  47. Guo Q-X, Luo S-H, Liu Y-C (1998) J Incl Phenom Mol Recognit Chem 30:173

    Article  CAS  Google Scholar 

  48. Li S, Purdy WC (1992) Chem Rev 92:1457

    Article  CAS  Google Scholar 

  49. Connors KA, Lin SF, Wong AB (1982) J Pharm Sci 71:217

    Article  CAS  PubMed  Google Scholar 

  50. Davies DM, Deary ME (1995) J Chem Soc Perkin Trans 2:1287

    Google Scholar 

  51. Delaage M (1991) In: Delaage M (ed) Molecular recognition mechanisms, Ch. 1. VCH, New York

    Google Scholar 

  52. Sakurai M, Kitagawa M, Inoue Y, Chujo R (1990) Carbohydr Res 198:181

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the University Grants Commission, New Delhi (Project No. F-31-98/2005 (SR) and Department of Science and Technology, New Delhi, (Fast Track Proposal-Young Scientist Scheme No. SR/FTP/CS-14/2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhu, A.A.M., Venkatesh, G. & Rajendiran, N. Unusual Spectral Shifts of Imipramine and Carbamazepine Drugs. J Fluoresc 20, 1199–1210 (2010). https://doi.org/10.1007/s10895-010-0669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0669-2

Keywords

Navigation