Skip to main content
Log in

Photochemically-Induced Fluorescence Dosage of Non-Fluorescent Pyrethroid (Etofenprox) in Natural Water Using a Cationic Micellar Medium

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An analytical method based on the use of UV-irradiation to produce fluorescent derivatives from Etofenprox a non-fluorescent pyrethroid insecticide is described. The impact of cetyltrimethylammonium chloride (CTAC) micellar medium on the Etofenprox photochemically-induced fluorescence (PIF) is reported. Parameters influencing the sensitivity and repeatability of the PIF method have been optimized. The alkaline medium (NaOH 6 × 10−2 M) + CTAC surfactant molecules (3.84 mg/ml) in acetonitrile is found to be very suitable for this pyrethroid insecticide analysis in environment matrices. Linear dynamic range is established over more than two orders of magnitude. The limit of detection is lower than 5 ng/ml. The method seems to be suitable for environmental matrices quality control. Application to the analysis of spiked natural waters gave recoveries rate ranged from 94 to 104% and 107 to 115% respectively for river and pound water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lengeler C (2004) Cochrane Database of Systematic Reviews. Issue 2, Insecticide-treated bed nets and curtains for preventing malaria, Art. No.: CD000363

  2. Darriet F, Marcombe S, Corbel V (2007) Avis relatif à l’évaluation des risques liés à l’utilisation des produits insecticides d’imprégnation des moustiquaires dans le contexte de l’épidémie de chikungunya, Saisine Afsset n° 2006/007, P 16-61

  3. Rubaihayo J, Tukesiga E, Abaasa A (2008) Reduced susceptibility to pyrethroid insecticide treated nets by the malaria vector Anopheles gambiae s.l. in western Uganda. Malar J. doi:10.1186/1475-2875-7-92

    Google Scholar 

  4. Aaron JJ, Coly A (1996) Photochemical–spectrofluorimetric determination of two pyrethroid insecticides using an anionic micellar medium. Analyst 121:1545–1549

    Article  CAS  Google Scholar 

  5. Saha S, Kaviraj A (2008) Acute toxicity of synthetic pyrethroid cypermethrin to some freshwater organisms. Bull Environ Contam Toxicol 80(1):49–52

    Article  PubMed  CAS  Google Scholar 

  6. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, (2001) Toxicological Profile for Pyrethrins and Pyrethroids

  7. Keeratikasikorn G, Hooper GHS (1981) The comparative toxicity of some insecticides to the potato moth phthorimaea operculella (Zeller) (Lepidoptera: gelechiidae) and two of its parasites orgilus Lepidus Muesebeck and Copidosoma Desantisj Annecke and Mynhardt. J Aust Entomol Soc 20:309–311

    Article  CAS  Google Scholar 

  8. International Program on Chemical Safety (IPCS)/World Health Organization (1990) Deltamethrin In: Environmental Health Criteria, IPCS/WHO, 97(6), 31–59

  9. Hawkins DR, Kirkpatrick D, Ewen B, Midgley I, Biggs SR, Whitby BR (1985) The biokinetics and metabolism of 14C-ethofenprox in the rat. Huntingdon Research Centre Ltd., England; report no. HRC/MTC 68/84610, dated 1 August 1985. Submitted to WHO by Mitsui Toatsu Chemicals, Inc., Tokyo, Japan

  10. Anadon A, Martinez-Larranaga MR, Fernandez-Cruz ML, Diaz MJ, Fernandez MC, Martinez MAJ (1996) Toxicokinetics of Deltamethrin and Its 4\′-HO-Metabolite in the Rat. Toxicol Appl Pharmacol 141:8–16

    PubMed  CAS  Google Scholar 

  11. Weinling D (2006) les précautions environnementales prises dans le cadre de la lutte antivectorielle contre le chikungunya, Disponible at : www.reunion.ecologie.gouv.fr/

  12. Ortiz-Pérez MD et al (2005) Environmental and occupational biomonitoring using the Comet assay. J Environ Health Perspect 113(6):782–786

    Article  Google Scholar 

  13. Katagi TJ (2004) Photodegradation of pesticides on plant and soil surface. Rev Environ Contam Toxicol 182:1–189

    Article  PubMed  CAS  Google Scholar 

  14. Tekel J, Kovacicova J (1993) Chromatographic methods in the determination of herbicide residues in crops, food and environmental samples. J Chromatogr A 643:291–303

    Article  CAS  Google Scholar 

  15. Yasin M, Baugh PJ, Hancock P, Bonwick GA, Davies DH, Armitage R (1995) Synthetic pyrethroid insecticides analysis by gas chromatography/mass spectrometry operated in negative-ion chemical ionization mode in soil, moss and fish tissue. Rapid Commun Mass Spectrom 9(14):1411–1417

    Article  CAS  Google Scholar 

  16. Coly A, Aaron JJ (2001) Simultaneous determination of binary mixtures of sulfonylurea herbicides in water by first derivative photochemically induced spectrofluorimetry. J AOAC Int 84(6):1745–1750

    PubMed  CAS  Google Scholar 

  17. Nilvé G, Knutsson M, Oensson JA (1994) Liquid chromatographic determination of sulfonylurea herbicides in natural waters after automated sample pretreatment using supported liquid membranes. J Chromatogr A 688(1):75–82

    Article  Google Scholar 

  18. Ozhan G, Alpertunga B (2008) Liquid chromatographic analysis of maneb and its main degradation product, ethylenethiouera, in fruit juice. J Food Addit Contam A 25(8):961–970

    Article  CAS  Google Scholar 

  19. Chapuis F, Pichon V, Lanza F, Sellergren B, Hennion M-C (2004) Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers: application to the extraction of triazines from complex matrices. J Chromatogr B 804(1):93–101

    Article  CAS  Google Scholar 

  20. Slates RV (1988) Determination of bensulfuron methyl residues in rice grain and straw by high-performance liquid chromatography. J Agric Food Chem 36(6):1207–1211

    Article  CAS  Google Scholar 

  21. Dineli G, Vicari A, Catizone P (1993) Use of capillary electrophoresis for detection of metsulfuron and chlorsulfuron in tap water. J Agric Food Chem 41(5):742–746

    Article  Google Scholar 

  22. Dineli G, Bonetti A, Catizone P, Galletti GC (1994) Separation and detection of herbicides in water by micellar electrokinetic capillary chromatography. J Chromatogr B 656:275–280

    Article  Google Scholar 

  23. Kelley MM, Zahnow WC, Petersen ST, Toy J (1985) Chlorsulfuron determination in soil extracts by enzyme immunoassay. J Agric Food Chem 33(5):962–965

    Article  CAS  Google Scholar 

  24. Hennion M-C, Pichon V (2003) Immuno-based sample preparation for trace analysis. J Chromatogr A 1000:29–52

    Article  PubMed  CAS  Google Scholar 

  25. Coly A, Aaron JJ (1998) Fluorimetric analysis of pesticides: methods, recent developments and applications. Talanta 46:815–843

    Article  PubMed  CAS  Google Scholar 

  26. Coly A, Aaron JJ (1994) Photochemical–spectrofluorimetric method for the determination of several aromatic insecticides. Analyst 119:1205–1209

    Article  CAS  Google Scholar 

  27. Coly A, Aaron JJ (1996) Flow injection analysis of several aromatic pesticides using fluorescence and photoinduced fluorescence detection. Analusis 24:107–112

    CAS  Google Scholar 

  28. Coly A, Aaron JJ (1998) Cyclodextrin-enhanced fluorescence and photochemically-induced fluorescence determination of five aromatic pesticides in water. Anal Chim Acta 360:129–141

    Article  CAS  Google Scholar 

  29. Coly A, Aaron JJ (1999) Photochemically-induced fluorescence determination of sulfonylurea herbicides using micellar media. Talanta 49:107–117

    Article  PubMed  CAS  Google Scholar 

  30. Adamou R, Coly A, Douabale ES, Ould Cheikh Ould Saleck ML, Gaye-Seye MD, Tine A (2005) Fluorimetric determination of Histamine in fish using micellar media and Fluorescamine as labelling reagent. Jofl 15(5):679–688

    CAS  Google Scholar 

  31. Adamou R, Coly A, Moussa I, Tine A, Ikhiri K (2008) Optimisation du milieu analytique pour le dosage spectrofluorimétrique de l’Histamine dans les produits halieutiques à l’aide de la Fluorescamine comme sensibilisateur. J Soc Ouest Afr Chim 026:69–78

    Google Scholar 

  32. Adamou R, Abdoulaye A, Soumaila M, Moussa I, Coly A, Tine A, Ikhiri K (2010) Dégradation abiotique de la Deltaméthrine et de l’Etofenprox dans les eaux naturelles du Niger. J Soc Ouest Afr Chim 029:45–54

    Google Scholar 

Download references

Aknowledgements

This work was financed by Université Abdou Moumouni (Niamey-Niger) within the UAM 2008-2010 research grant. We are grateful to the Laboratoire de Photochimie et d’Analyse (LPA-FST/UCAD, Dakar Senegal) for the technical and logistical support during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabani Adamou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamou, R., Coly, A., Abdoulaye, A. et al. Photochemically-Induced Fluorescence Dosage of Non-Fluorescent Pyrethroid (Etofenprox) in Natural Water Using a Cationic Micellar Medium. J Fluoresc 21, 1409–1415 (2011). https://doi.org/10.1007/s10895-010-0824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0824-9

Keywords

Navigation