Skip to main content
Log in

Cucurbit[7]uril Disrupts Aggregate Formation Between Rhodamine B Dyes Covalently Attached to Glass Substrates

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Dye aggregation is detrimental to the performance of high optical density dye-doped photonic materials. To overcome this challenge, the ability of cucurbit[7]uril (CB7) as a molecular host to disrupt aggregate formation on glass substrates was examined. Rhodamine B was covalently attached to glass slides by initially coating the surface with azidohexylsiloxane followed by copper-catalyzed “click” triazole formation with rhodamine B propargyl ester. The absorption and emission spectra of rhodamine B coated slides in water indicated diverse heterogeneous properties as surface dye density varied. Fluorescence quenching due to dye aggregation was evident at high surface dye density. Addition of aqueous cucurbit[7]uril (CB7) to the surface-tethered dyes perturbed the spectra to reveal a considerable reduction in heterogeneity, which suggested that the presence of a surface in close proximity does not significantly impair CB7’s ability to complex with tethered rhodamine B.

Aggregates from densely packed surface-attached rhodamine B exhibited inhomogeneous fluorescence that varies with surface rhodamine B density. CB7 binding disrupted aggregate formation, which led to homogeneous fluorescence independent of the surface density of rhodamine B

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ooyama Y, Harima Y (2009) Eur J Org Chem 2009:2903

  2. Gratzel M (2005) Inorg Chem 44:6841

    Article  PubMed  Google Scholar 

  3. de Schryver FC, Vosch T, Cotlet M, van der Auweraer M, Müllen K, Hofkens J (2005) Acc Chem Res 38:514

    Article  PubMed  Google Scholar 

  4. Tietz C, Jelezko F, Gerken U, Schuler S, Schubert A, Rogl H, Wrachtrup J (2001) Biophys J 81:556

    Article  PubMed  CAS  Google Scholar 

  5. Zhang Y-H, Gao Z-X, Zhong C-L, Zhou H-B, Chen L, Wu W-M, Peng X-J, Yao Z-J (2007) Tetrahedron 63:6813

    Article  CAS  Google Scholar 

  6. Kálai T, Hideg K (2006) Tetrahedron 62:10352

    Article  Google Scholar 

  7. Chang PV, Prescher JA, Hangauer MJ, Bertozzi CR (2007) J Am Chem Soc 129:8400

    Article  PubMed  CAS  Google Scholar 

  8. Nau WM, Mohanty J (2005) Int J Photoenergy 7:717

    Article  Google Scholar 

  9. Meier JL, Mercer AC, Rivera H, Burkart MD (2006) J Am Chem Soc 128:12174

    Article  PubMed  CAS  Google Scholar 

  10. Selwyn JE, Steinfeld JI (1972) J Phys Chem 76:762

    Article  CAS  Google Scholar 

  11. Rohatgi KK, Singhal GS (1966) J Phys Chem 70:1695

    Article  CAS  Google Scholar 

  12. Martyn TA, Moore JL, Halterman RL, Yip WT (2007) J Am Chem Soc 129:10338

    Article  PubMed  CAS  Google Scholar 

  13. Gilliland JW, Yokoyama K, Yip WT (2005) Chem Mater 17:6702

    Article  CAS  Google Scholar 

  14. Chambers RW, Kajiwara T, Kearns DR (1974) J Phys Chem 78:380

    Article  CAS  Google Scholar 

  15. Abad S, Kluciar M, Miranda MA, Pischel U (2005) J Org Chem 70:10565

    Article  PubMed  CAS  Google Scholar 

  16. Guo X, Zhang D, Zhou Y, Zhu D (2003) J Org Chem 68:5681

    Article  PubMed  CAS  Google Scholar 

  17. Mori T, Ko YH, Kim K, Inoue Y (2006) J Org Chem 71:3232

    Article  PubMed  CAS  Google Scholar 

  18. Bujdak J, Iyi N (2006) J Phys Chem B 110:2180

    Article  PubMed  CAS  Google Scholar 

  19. Gutierrez MC, Hortiguela MJ, Ferrer ML, del Monte F (2007) Langmuir 23:2175

    Article  PubMed  CAS  Google Scholar 

  20. Avnir D, Levy D, Reisfeld R (1984) J Phys Chem 88:5956

    Article  CAS  Google Scholar 

  21. Ilich P, Mishra PK, Macura S, Burghardt TP (1996) Spectrochim Acta A 52:1323

    Article  Google Scholar 

  22. Gal ME, Kelly GR, Kurucsev T (1973) J Chem Soc, Faraday Trans 2(69):395

    Google Scholar 

  23. Halterman RL, Moore JL, Mannel LM (2008) J Org Chem 73:3266

    Article  PubMed  CAS  Google Scholar 

  24. Day A, Arnold AP, Blanch RJ, Snushall B (2001) J Org Chem 66:8094

    Article  PubMed  CAS  Google Scholar 

  25. Kim J, Jung I, Kim S, Lee E, Kang J, Sakamoto S, Yamaguchi K, Kim K (2000) J Am Chem Soc 122:540

    Article  CAS  Google Scholar 

  26. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844

    Article  CAS  Google Scholar 

  27. Fiorilli S, Onida B, Barolo C, Viscardi G, Brunel D, Garrone E (2007) Langmuir 23:2261

    Article  PubMed  CAS  Google Scholar 

  28. See for instance, Invitrogen’s “Molecular Probes The Handbook--A guide to fluorescent probes and labeling technologies” http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html

  29. Wang R, Yuan L, Macartney DH (2005) Chem Commun 41:5867

  30. Ong W, Gomez-Kaifer M, Kaifer AE (2002) Org Lett 4:1791

    Article  PubMed  CAS  Google Scholar 

  31. Yuan L, Wang R, Macartney DH (2007) J Org Chem 72:4539

    Article  PubMed  CAS  Google Scholar 

  32. Moon K, Kaifer AE (2004) Org Lett 6:185

    Article  PubMed  CAS  Google Scholar 

  33. Collman JP, Devaraj NK, Chidsey CED (2004) Langmuir 20:1051

    Article  PubMed  CAS  Google Scholar 

  34. Pichon BP, Wong Chi Man M, Bied C, Moreau JJE (2006) J Organomet Chem 691:1126

    Article  CAS  Google Scholar 

  35. Hassner A, Alexanian V (1978) Tetrahedron Lett 46:4475

    Article  Google Scholar 

  36. MacBeath G, Koehler AN, Schreiber SL (1999) J Am Chem Soc 121:7967

    Article  CAS  Google Scholar 

  37. Gao L, Liu S (2004) Anal Chem 76:7179

    Article  PubMed  CAS  Google Scholar 

  38. Lenhart JL, van Zanten JH, Dunkers JP, Zimba CG, James CA, Pollack SK, Parnas RS (2000) J Colloid Interf Sci 221:75

    Article  CAS  Google Scholar 

  39. Bock VD, Hiemstra H, van Maarseveen JH (2006) Eur J Org Chem 2006:51

  40. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596

    Article  CAS  Google Scholar 

  41. DÌez-Gonzalez S, Correa A, Cavallo L, Nolan SP (2006) Chem Eur J 12:7558

    Article  Google Scholar 

  42. del Monte F, Levy D (1998) J Phys Chem B 102:8036

    Article  Google Scholar 

  43. Lee M, Kim J, Tang J, Hochstrasser RM (2002) Chem Phys Lett 359:412

    CAS  Google Scholar 

Download references

Acknowledgment

The support of NSF (DMR-0805233 to RLH, CHE-0442151 to WTY) is acknowledged as well as a DoEd GAANN fellowship to JLM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald L. Halterman or Wai Tak Yip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halterman, R.L., Moore, J.L. & Yip, W.T. Cucurbit[7]uril Disrupts Aggregate Formation Between Rhodamine B Dyes Covalently Attached to Glass Substrates. J Fluoresc 21, 1467–1478 (2011). https://doi.org/10.1007/s10895-011-0832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0832-4

Keywords

Navigation