Skip to main content
Log in

Directly Oxidized Chemiluminescence of 2-Substituted-4,5-di(2-Furyl)-1H -Imidazole by Acidic Potassium Permanganate and its Analytical Application for Determination of Albumin

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the paper, 2,4,5-tri(2-furyl)-1H-imidazole (TFI) and 2-phenyl-4,5-di(2-furyl)-1H-imidazole (PDFI), were chosen to investigate chemiluminescence (CL) properties of 2-substituted-4,5-di(2-furyl)-1H-imidazoles. The directly oxidized CL of analytes by potassium permanganate (KMnO4) was in detail studied. The KMnO4 could directly oxidize TFI/PDFI to produce strong CL emission in acidic solution. The effects of experimental conditions were investigated. Under the optimal conditions, the effect of albumin on the TFI/PDFI-KMnO4 system was investigated. It was found that the addition of albumin into the system could induce enhancement of CL signal, and the enhanced CL intensity is linearly related to the logarithm of concentration of albumin. Based on this study, a novel CL method has been developed for the determination of albumin with high sensitivity and good selectivity. The method was applied to the determination of albumin in human serum samples, and the results were in agreement with those obtained by the bromcresol green (BCG) method. The relative errors for the analytical results were from −5.8% to 4.2%. These new phenomena would further enable people to exploit more CL analytical application of the heterocyclic imidazole derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Santos J, Mintz EA, Zehnder O, Bosshard C, Bua XR, Günterb P (2001) New class of imidazoles incorporated with thiophenevinyl conjugation pathway for robust nonlinear optical chromophores. Tetrahedron Lett 42:805–808

    Article  CAS  Google Scholar 

  2. Fridman N, Speiser S, Kaftory M (2006) Structures and chromogenic properties of bisimidazole derivatives. Cryst Growth Des 6:1653–1662

    Article  CAS  Google Scholar 

  3. Fridman N, Speiser S, Kaftory M (2006) Chromotropic behavior of lophine nitro-derivatives. Cryst Growth Des 6:2281–2288

    Article  CAS  Google Scholar 

  4. Nashima K (2003) Lophine derivatives as versatile analytical tools. Biomed Chromatogr 17:83–95

    Article  Google Scholar 

  5. Uçucu Ü, Karaburun NG, Işikdağ I (2001) Synthesis and analgesic activity of some 1-benzyl-2-substituted-4, 5-diphenyl-1H-imidazole derivatives. IL Farmaco 56:285–290

    Article  PubMed  Google Scholar 

  6. Testa AC (2000) Laser flash photolysis study of triphenylimidazole. Spectrochim Acta Part A 56:901–904

    Article  CAS  Google Scholar 

  7. Chou P, McMorrow D, Aartsma TJ, Kasha M (1984) The proton-transfer laser. Galn spectrum and ampllficatlon of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88:4596–4599

    Article  CAS  Google Scholar 

  8. Kimura M, Lu GH, Iga H, Tsunenaga M, Zhang ZQ, Hu ZZ (2007) The stereoselective thermal rearrangement of chiral lophine peroxides. Tetrahedron Lett 48:3109–3113

    Article  CAS  Google Scholar 

  9. Fridman N, Kaftory M, Speiser S (2007) Structures and photophysics of lophine and double lophine derivatives. Sens Actuators B 126:107–115

    Article  Google Scholar 

  10. Nakashima K, Yamasaki H, Kuroda N, Akiyama S (1995) Evaluation of lophine derivatives as chemiluminogens by a flow-injection method. Anal Chim Acta 303:103–107

    Article  CAS  Google Scholar 

  11. Fridman N, Kaftory M, Eichen Y, Speiser S (2009) Crystal structures and solution spectroscopy of lophine derivatives. J Mol Struct 917:101–109

    Article  CAS  Google Scholar 

  12. Nakashima K, Fukuzaki Y, Nomura R, Shimoda R, Nakamura Y, Kuroda N, Akiyama S, Irgum K (1998) Fluorescence and chemiluminescence properties of newly developed lophine analogues. Dyes Pigm 38:127–136

    Article  CAS  Google Scholar 

  13. Siddiqui SA, Narkhede UC, Palimkar SS, Daniel T, Lahoti RJ, Srinivasan KV (2005) Room temperature ionic liquid promoted improved and rapid synthesis of 2, 4, 5-triaryl imidazoles from aryl aldehydes and 1, 2-diketones or a-hydroxyketone. Tetrahedron 61:3539–3546

    Article  CAS  Google Scholar 

  14. Marquette CA, Blum LJ (2006) Applications of the luminol chemiluminescent reaction in analytical chemistry. Anal Bioanal Chem 385:546–554

    Article  PubMed  CAS  Google Scholar 

  15. Tsukagoshi K, Nakahama K, Nakajima R (2004) Direct detection of biomolecules in a capillary electrophoresis-chemiluminescence detection system. Anal Chem 76:4410–4415

    Article  PubMed  CAS  Google Scholar 

  16. Gámiz-Gracia L, García-Campaña AM, Soto-Chinchilla JJ, Huertas-Pérez JF, González-Casado A (2005) Analysis of pesticides by chemiluminescence detection in the liquid phase. Trends Anal Chem 24:927–942

    Article  Google Scholar 

  17. Fletcher KA, Fakayode SO, Lowry M, Tucker SA, Neal SL, Kimaru IW, McCarroll ME, Patonay G, Oldham PB, Rusin O, Strongin RM, Warner IM (2006) Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry. Anal Chem 78:4047–4068

    Article  PubMed  CAS  Google Scholar 

  18. Nakashima K, Yamasaki H, Shimoda R, Kuroda N, Akiyama S, Baeyens WRG (1997) Flow-injection analysis of cobalt (II) utilizing enhanced lophine chemiluminescence with hydroxylammonium chloride. Biomed Chromatogr 11:63–64

    Article  PubMed  CAS  Google Scholar 

  19. Marho DF, Ingle JD Jr (1981) Determination of chromium (VI) in water by lophine chemiluminescence. Anal Chem 53:294–298

    Article  Google Scholar 

  20. MacDonald A, Chan KW, Nieman TA (1979) Lophine chemiluminescence for metal ion determinations. Anal Chem 51:2077–2082

    Article  CAS  Google Scholar 

  21. Marho DF, Ingle JD Jr (1981) Ion exchange separation of cobalt from alkaline earth and selected transition metals with lophine chemiluminescence detection. Anal Chem 53:292–294

    Article  Google Scholar 

  22. Benjamin JH, Neil WB (2001) Analytical applications of acidic potassium permanganate as a chemiluminescence reagent. Anal Chem Acta 445:1–19

    Article  Google Scholar 

  23. Chen H, Lu C, Li RB, Guo GS, Lin JM (2010) Chemiluminescence behavior of sodium hydrogen carbonate in the potassium permanganate-hydrogen peroxide reaction. Sci China Chem 53:1784–1792

    Article  CAS  Google Scholar 

  24. Galera MM, García MDG, Valverde RS (2008) Determination of photoirradiated high polar benzoylureas in tomato by HPLC with luminol chemiluminescence detection. Talanta 76:815–823

    Article  PubMed  CAS  Google Scholar 

  25. Adcock JL, Francis PS, Barnet NW (2007) Acidic potassium permanganate as a chemiluminescence reagent—a review. Anal Chem Acta 601:36–67

    Article  CAS  Google Scholar 

  26. Bree AG, Neil WB, Richard B (2005) Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2, 2′-bipyridyl)ruthenium (II) chemiluminescence. Anal Chem Acta 541:119–124

    Google Scholar 

  27. Han HY, He ZK, Zeng YE (2006) Chemiluminescence method for the determination of glutathione in human serum using the Ru(phen)3 2+ KMnO4 system. Microchim Acta 155:431–434

    Article  CAS  Google Scholar 

  28. Slezak T, Terry JM, Francis PS, Hindson CM, Olson DC, Wolcott DK, Barnett NW (2010) Autocatalytic nature of permanganate oxidations exploited for highly sensitive chemiluminescence detection. Anal Chem 82:2580–2584

    Article  PubMed  CAS  Google Scholar 

  29. Hindson CM, Francis PS, Hanson GR, Adcock JL, Barnett NW (2010) Mechanism of permanganate chemiluminescence. Anal Chem 82:4174–4180

    Article  PubMed  CAS  Google Scholar 

  30. Wang SJ, Gu Q, Su Q, Chen XD, Zhang YM (2009) 2,4,5-Tri-2-furyl-1H-imidazole. Acta Crystallogr Sect E Struct Rep 65:O3194-U1481

    Google Scholar 

  31. Wang J, Mason R, VanDerveer D, Feng K, Bu XR (2003) Convenient preparation of a novel class of imidazo[1, 5-a]pyridines: decisive role by ammonium acetate in chemoselectivity. J Org Chem 68:5415–5418

    Article  PubMed  CAS  Google Scholar 

  32. Deftereos NT, Grekas N, Calokerinos AC (2000) Flow injection chemiluminometric determination of albumin. Anal Chim Acta 403:137–143

    Article  CAS  Google Scholar 

  33. Jiang CQ, Luo L (2004) Spectrofluorimetric determination of human serum albumin using a doxycycline–europium probe. Anal Chim Acta 506:171–175

    Article  CAS  Google Scholar 

  34. Dong LJ, Li Y, Zhang YH, Chen XG, Hu ZD (2007) A flow injection sampling resonance light scattering system for total protein determination in human serum. Spectrochim Acta Part A 66:1317–1322

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Zhang, Y., Huang, Z. et al. Directly Oxidized Chemiluminescence of 2-Substituted-4,5-di(2-Furyl)-1H -Imidazole by Acidic Potassium Permanganate and its Analytical Application for Determination of Albumin. J Fluoresc 21, 1607–1615 (2011). https://doi.org/10.1007/s10895-011-0849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0849-8

Keywords

Navigation