Skip to main content
Log in

Determination of Ubiquinone in Blood by High-Performance Liquid Chromatography with Post-Column Fluorescence Derivatization Using 2-Cyanoacetamide

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

It was shown that ubiquinone (CoQ10) and ubiquinol (CoQ10H2) produce fluorescence products under alkaline conditions when reacted with 2-cyanoacetamide. The reaction mixture from CoQ10 gave fluorescence with excitation and emission maximum wavelengths at 442 nm and 549 nm, respectively. This reaction was considered to proceed via Craven’s reaction. Moreover, 2-cyanoacetamide was shown to be a useful reagent for high-performance liquid chromatography (HPLC) with post-column fluorescence derivatization of CoQ10 and CoQ10H2 in blood. CoQ10 showed a linear response in the range of 0.32–1276 ng, and the detection limit (S/N = 3) was 0.16 ng. Moreover, the sample pretreatment by deproteinization and extraction of CoQ10 and CoQ10H2 from plasma using 1-propanol with potassium formate was effective for excellent separation of CoQ10 and CoQ10H2 from other fluorescent substances in the blood. This simple and rapid pretreatment was considered to minimize the oxidation of CoQ10H2. On the other hand, CoQ10 and CoQ10H2 in plasma samples obtained by finger prick were detected, as in venous blood obtained by venipuncture. Our method involving the simple and rapid collection of plasma by finger prick and sample pretreatment is thought to be applicable for the determination of CoQ10H2/total CoQ10 ratio as a biomarker of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ernster L, Dallner G (1995) Biochemical physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271(1):195–204

    PubMed  Google Scholar 

  2. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660(1–2):171–199

    PubMed  CAS  Google Scholar 

  3. Kamikawa T, Kobayashi A, Yamashita T, Hayashi H, Yamazaki N (1985) Effects of coenzyme Q10 on exercise tolerance in chronic stable angina pectoris. Am J Cardiol 56(4):247–251

    Article  PubMed  CAS  Google Scholar 

  4. Morisco C, Trimarco B, Condorelli M (1993) Effect of coenzyme Q10 therapy in patients with congestive heart failure: a long-term multicenter randomized study. Clin Investig 71(8 Suppl):134–136

    Google Scholar 

  5. Artuch R, Vilaseca MA, Moreno J, Lambruschini N, Cambra FJ, Campistol J (1999) Decreased serum ubiquinone-10 concentrations in phenylketonuria. Am J Clin Nutr 70(5):892–895

    PubMed  CAS  Google Scholar 

  6. Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, Santorelli FM, Miranda AF, Bonilla E, Mojon DS, Barreira AA, King MP, DiMauro S (1997) Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 48(5):1238–1243

    PubMed  CAS  Google Scholar 

  7. Hübner C, Hoffmann GF, Charpentier C, Gibson KM, Finckh B, Puhl H, Lehr HA, Kohlschütter A (1993) Decreased plasma ubiquinone-10 concentration in patients with mevalonate kinase deficiency. Pediatr Res 34(2):129–133

    Article  PubMed  Google Scholar 

  8. Mohr D, Bowry VW, Stocker R (1992) Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta 1126(3):247–254

    PubMed  CAS  Google Scholar 

  9. Weber C, Sejersgård Jakobsen T, Mortensen SA, Paulsen G, Hølmer G (1994) Antioxidative effect of dietary coenzyme Q10 in human blood plasma. Int J Vitam Nutr Res 64(4):311–315

    PubMed  CAS  Google Scholar 

  10. Lu WL, Zhang Q, Lee HS, Zhou TY, Sun HD, Zhang DW, Zheng L, Lee M, Wong SM (2003) Total coenzyme Q10 concentrations in Asian men following multiple oral 50-mg doses administered as coenzyme Q10 sustained release tablets or regular tablets. Biol Pharm Bull 26(1):52–55

    Article  PubMed  CAS  Google Scholar 

  11. Ernster L, Forsmark-Andrée P (1993) Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig 71(8 Suppl):60–65

    Google Scholar 

  12. Yamashita S, Yamamoto Y (1997) Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress. Anal Biochem 250(1):66–73

    Article  PubMed  CAS  Google Scholar 

  13. Ruiz-Jiménez J, Priego-Capote F, Mata-Granados JM, Quesada JM, Luque de Castro MD (2007) Determination of the ubiquinol-10 and ubiquinone-10 (coenzyme Q10) in human serum by liquid chromatography tandem mass spectrometry to evaluate the oxidative stress. J Chromatogr A 1175(2):242–248

    Article  PubMed  Google Scholar 

  14. Abdul-Rasheed OF, Farid YY (2009) Development of a new high performance liquid chromatography method for measurement of coenzyme Q10 in healthy blood plasma. Saudi Med J 30(9):1138–1143

    PubMed  Google Scholar 

  15. Li K, Shi Y, Chen S, Li W, Shang X, Huang Y (2006) Determination of coenzyme Q10 in human seminal plasma by high-performance liquid chromatography and its clinical application. Biomed Chromatogr 20(10):1082–1086

    Article  PubMed  CAS  Google Scholar 

  16. Tang PH, Miles MV, DeGrauw A, Hershey A, Pesce A (2001) HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem 47(2):256–265

    PubMed  CAS  Google Scholar 

  17. Hansen G, Christensen P, Tüchsen E, Lund T (2004) Sensitive and selective analysis of coenzyme Q10 in human serum by negative APCI LC-MS. Analyst 129(1):45–50

    Article  PubMed  CAS  Google Scholar 

  18. Lagendijk J, Ubbink JB, Vermaak WJ (1996) Measurement of the ratio between the reduced and oxidized forms of coenzyme Q10 in human plasma as a possible marker of oxidative stress. J Lipid Res 37(1):67–75

    PubMed  CAS  Google Scholar 

  19. Chang A, Frank J, Knaebel J, Fullam J, Pardo S, Simmons DA (2010) Evaluation of an over-the-counter glycated hemoglobin (A1C) test kit. J Diabetes Sci Technol 4(6):1495–1503

    PubMed  Google Scholar 

  20. Ito T, Kamoi K, Minagawa S, Kimura K, Kobayashi A (2010) Patient perceptions of different lancing sites for self-monitoring of blood glucose: a comparison of fingertip site with palm site using the OneTouch ultra blood glucose monitoring system. J Diabetes Sci Technol 4(4):906–910

    PubMed  Google Scholar 

  21. Mc Naughton LR, Thompson D, Philips G, Backx K, Crickmore L (2002) A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions. Int J Sports Med 23(2):130–135

    Article  PubMed  CAS  Google Scholar 

  22. Abe K, Ishibashi K, Ohmae M, Kawabe K, Katsui G (1977) Determination of ubiquinone in serum by high-speed liquid chromatography with fluorometric detector. Vitamins 51(3):119–125

    CAS  Google Scholar 

  23. Honda S, Takahashi M, Araki Y, Kakehi K (1983) Postcolumn derivatization of catecholamines with 2-cyanoacetamide for fluorimetric monitoring in high-performance liquid chromatography. J Chromatogr 274:45–52

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Yang J, Wu X, Li L (2003) Fluorometric Determination of 3,4-Dihydroxyphenylalanine with 2-Cyanoacetamide. J Fluoresc 13(2):123–128

    Article  CAS  Google Scholar 

  25. Cramer JA, Bailey LC (1991) A reversed-phase ion-pair high-performance liquid chromatography method for bovine testicular hyaluronidase digests using postcolumn derivatization with 2-cyanoacetamide and ultraviolet detection. Anal Biochem 196(1):183–191

    Article  PubMed  CAS  Google Scholar 

  26. Sakai S, Otake E, Toida T, Goda Y (2007) Identification of the origin of chondroitin sulfate in “health foods”. Chem Pharm Bull 55(2):299–303

    Article  PubMed  CAS  Google Scholar 

  27. Okamoto T, Fukunaga Y, Ida Y, Kishi T (1988) Determination of reduced and total ubiquinones in biological materials by liquid chromatography with electrochemical detection. J Chromatogr 430(1):11–19

    PubMed  CAS  Google Scholar 

  28. Redalieu E, Nilsson IM, Farley TM, Folkers K, Koniuszy FR (1968) Determination and levels of coenzyme Q10 in human blood. Anal Biochem 23(1):132–140

    Article  PubMed  CAS  Google Scholar 

  29. Redalieu E, Nilsson IM, Nilsson JL, Kjaer-Pedersen DL, Folkers K (1968) New procedures for assay and stability of coenzyme Q10 in human blood. Int Z Vitaminforsch 38(3–4):345–354

    PubMed  CAS  Google Scholar 

  30. Rokos JA (1973) Determination of ubiquinone in subnanomole quantities by spectrofluorometry of its product with alkaline ethylcyanoacetate. Anal Biochem 56(1):26–33

    Article  PubMed  CAS  Google Scholar 

  31. Shimada H, Kodjabachian D, Ishida M (2007) Specific and rapid analysis of ubiquinones using Craven’s reaction and HPLC with postcolumn derivatization. J Lipid Res 48(9):2079–2085

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Zhang Y, Wang Y (2002) Liquid—Liquid Equilibria for 1-Propanol (or 2-Propanol)—Water systems containing potassium fluoride. J Chem Eng Data 47(1):110–112

    Article  CAS  Google Scholar 

  33. Hasegawa T, Kubo H, Shinozaki K, Nowatari M, Ishii M (2010) Micro determination of cortisol and cortisone in umbilical cord blood by chemiluminescent high-performance liquid chromatography. Biomed Chromatogr 24(6):613–699

    PubMed  CAS  Google Scholar 

  34. Ikenoya S, Takada M, Yuzuriha T, Abe K, Katayama K (1981) Studies on reduced and oxidized ubiquinones. I. Simultaneous determination of reduced and oxidized ubiquinones in tissues and mitochondria by high performance liquid chromatography. Chem Pharm Bull 29(1):158–164

    PubMed  CAS  Google Scholar 

  35. la Marca G, Malvagia S, Filippi L, Fiorini P, Innocenti M, Luceri F, Pieraccini G, Moneti G, Francese S, Dani FR, Guerrini R (2008) Rapid assay of topiramate in dried blood spots by a new liquid chromatography-tandem mass spectrometric method. J Pharm Biomed Anal 48(5):1392–1396

    Article  PubMed  Google Scholar 

  36. Alfazil AA, Anderson RA (2008) Stability of benzodiazepines and cocaine in blood spots stored on filter paper. J Anal Toxicol 32(7):511–515

    PubMed  CAS  Google Scholar 

  37. Allanson AL, Cotton MM, Tettey JN, Boyter AC (2007) Determination of rifampicin in human plasma and blood spots by high performance liquid chromatography with UV detection: a potential method for therapeutic drug monitoring. J Pharm Biomed Anal 44(4):963–969

    Article  PubMed  CAS  Google Scholar 

  38. Spooner N, Lad R, Barfield M (2009) Dried blood spots as a sample collection technique for the determination of pharmacokinetics in clinical studies: considerations for the validation of a quantitative bioanalytical method. Anal Chem 81(4):1557–1563

    Article  PubMed  CAS  Google Scholar 

  39. Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90(17):7915–7922

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nohara, Y., Suzuki, J. & Kubo, H. Determination of Ubiquinone in Blood by High-Performance Liquid Chromatography with Post-Column Fluorescence Derivatization Using 2-Cyanoacetamide. J Fluoresc 21, 2093–2100 (2011). https://doi.org/10.1007/s10895-011-0908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0908-1

Keywords

Navigation