Skip to main content
Log in

DFT/TDDFT Study on the Electronic Structure and Spectral Properties of Diphenyl Azafluoranthene Derivative

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Paper reports the DFT/TDDFT study on the electronic structure and spectral properties of the five-membered annulated diphenyl azafluoranthene derivative 1,3-diphenyl-3H-indeno[1,2,3-de]pyrazolo[3,4-b]quinoline (DPIPQ) by means of polarizable continuum model (PCM) and Onsager reaction field approaches at the B3LYP/6-31+G(d,p) level of theory. The results of calculations are compared with the optical absorption and fluorescence spectra as well as with the cyclic voltammetry data. The DFT/TDDFT/PCM approaches exhibit rather good quantitative agreement regarding the spectral position of the first absorption band; the discrepancy between the experiment and theory is less than 0.06 eV (linear response approach) or 0.25 eV (state specific approach). As for the fluorescence emission the TDDFT/PCM calculations underestimate the transition energy on about of 0.7–0.8 eV. Such discrepancy should be attributed to insufficient quality of the TDDFT/PCM optimization in the excited state. Ignoring the geometrical relaxation in the excited state provides considerably better agreement between the experiment and theory; discrepancy is less than 0.1–0.22 eV depending on a solvent polarity. The dominant influence on the fluorescence emission results mainly from the solvent reorganization in the excited state whereas the solute relaxation is indeed weak and may be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sato Y, Mizoguchi T, Kudo Y, Ishida R (1981) Novel triazafluoranthene compound and processes for preparing the same. U.S. Patent 4,367,230. Chem Abstr 96:217867 (1981)

    Google Scholar 

  2. Asselin AA, Humber LG (1979) 10b-Azafluoranthene derivatives and precursors thereof. U.S. Patent 4,171,443. Chem Abstr 92:41918 (1979)

    Google Scholar 

  3. Toribio F, Galceran MT, Puignou LJ (2000) Separation of heteroaromatic amines in food products. Chromatogr B 747:171

    Article  CAS  Google Scholar 

  4. Khan SI, Nimrod AC, Mehrpooya M, Nitiss JL, Walker LA, Clark AM (2002) Antifungal activity of eupolauridine and its action on DNA topoisomerases. Antimicrob Agents Chemother 46:1785

    Article  PubMed  CAS  Google Scholar 

  5. Wamberg MC, Hassan AA, Bond AD, Pedersen EB (2006) Intercalating nucleic acids (INAs) containing insertions of 6H-indolo[2,3-b]quinoxaline. Tetrahedron 62:11187

    Article  CAS  Google Scholar 

  6. Danel KS, Ga̧siorski P, Matusiewicz M, Całus S, Uchacz T, Kityk AV (2010) UV–vis spectroscopy and semiempirical quantum chemical studies on methyl derivatives of annulated analogues of azafluoranthene and azulene dyes. Spectrochim Acta A 77:16

    Article  CAS  Google Scholar 

  7. Całus S, Danel KS, Uchacz T, Kityk AV (2010) Optical absorption and fluorescence spectra of novel annulated analogues of azafluoranthene and azulene dyes. Mater Chem Phys 121:477

    Article  Google Scholar 

  8. Ga̧siorski P, Danel KS, Matusiewicz M, Uchacz T, Kityk AV (2010) From pirazoloquinolines to annulated azulene dyes: UV–VIS spectroscopy and quantum chemical study. J Lumin 130:2460

    Article  Google Scholar 

  9. Ga̧siorski P, Danel KS, Matusiewicz M, Uchacz T, Vlokh R, Kityk AV (2011) Synthesis and spectroscopic study of several novel annulated azulene and azafluoranthene based derivatives. J Fluoresc 21:443

    Article  PubMed  Google Scholar 

  10. Danel KS, Wisła A, Uchacz T (2009) Unexpected intramolecular cyclization of 4-(2-halophenyl)pyrazolo[3,4-b]quinolines: formation of 5- and 7-membered rings from one starter. ARKIVOC X:71

    Google Scholar 

  11. Całus S, Gondek E, Danel A, Jarosz B, Pokladko M, Kityk AV (2007) Electroluminescence of 6-R-1,3-diphenyl- 1H-pyrazolo[3,4-b]quinoline-based organic light-emitting diodes (R = F, Br, Cl, CH3, C2H3 and N(C6H5)2). Mater Lett 61:3292

    Article  Google Scholar 

  12. Gondek E, Całus S, Danel A, Kityk AV (2008) Photoluminescence and electroluminescence of methoxy and carboethoxy derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline. Spectrochim Acta A 69:22

    Article  CAS  Google Scholar 

  13. Gondek E, Kityk IV, Danel A (2008) Some anthracene derivatives with N,N-dimethylamine moieties as materials for photovoltaic devices. Mater Chem Phys 112:301

    Article  CAS  Google Scholar 

  14. Liu S, He P, Wang H, Shi J, Gong M (2009) A highly luminescent dinuclear Eu(III) complex based on 4,4-bis (4 ,4 ,4 -trifluoro-1 ,3 -dioxobutyl)-o-terphenyl for light-emitting diodes. Mater Chem Phys 116:654

    Article  CAS  Google Scholar 

  15. Iwakuma T (2008) Azaaromatic compounds having azafluoranthene skeletons and organic luminescent devices made by using the same. U.S. Patent 20080206597

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  17. Gondek E, Danel A, Kwiecień B, Nizioł J, Kityk AV (2010) Photoluminescence spectra of bisphenol A based pyrazoloquinoline dimers in different solvents: experiment and quantum chemical calculations. Mater Chem Phys 119:140

    Article  CAS  Google Scholar 

  18. Koścień E, Gondek E, Pokladko M, Jarosz B, Vlokh RO, Kityk AV (2009) Photoluminescence of 1,3-dimethyl pyrazoloquinoline derivatives. Mater Chem Phys 114:860

    Article  Google Scholar 

  19. Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103

    Article  PubMed  Google Scholar 

  20. Improta R, Scalmani G, Frisch MJ, Barone V (2007) Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J Chem Phys 127:074504

    Article  PubMed  Google Scholar 

  21. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999

    Article  PubMed  CAS  Google Scholar 

  22. Koścień E, Sanetra J, Gondek E, Danel A, Wisła A, Kityk AV (2003) Optical absorption measurements and quantum-chemical simulations on 1H-pyrazolo[3,4-b]quinoline derivatives. Opt Commun 227:115

    Article  Google Scholar 

  23. Koścień E, Sanetra J, Gondek E, Jarosz B, Kityk IV, Ebothe J, Kityk AV (2005) Optical poling effect and optical absorption of cyan, ethylcarboxyl and tert-buthyl derivatives of 1H-pyrazolo[3,4-b]quinoline: experiment and quantum-chemical simulations. Spectrochim Acta A 61:1933

    Article  Google Scholar 

  24. Calus S, Gondek E, Danel A, Jarosz B, Kityk AV (2006) Optical absorption of 1,3-diphenyl-1H-Pyrazolo[3,4-b]quinoline and its derivatives. Opt Commun 268:64

    Article  CAS  Google Scholar 

  25. Całus S, Gondek E, Danel A, Jarosz B, Kityk AV (2007) Photoluminescence of 1,3-Diphenyl-1H-pyrazolo[3,4-b]quinoline and its derivatives: experiment and quantum chemical simulations. Opt Commun 271:16

    Article  Google Scholar 

  26. Trasatti S (1986) The absolute electrode potential: an explanatory note. Pure Appl Chem 58:955

    Article  CAS  Google Scholar 

  27. Pavlishchuk VV, Addison AW (2000) Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C. Inorg Chim Acta 298:97

    Article  CAS  Google Scholar 

  28. The HOMO and LUMO orbitals have been calculated by means of the program Gabedit representing a free Graphical User Interface for computational chemistry packages written by A.R. Allouche. It is available from http://gabedit.sourceforge.net/

  29. Martin RL (2003) Natural transition orbitals. J Chem Phys 118:4775

    Article  CAS  Google Scholar 

  30. Badaeva E, Albert VV, Kilina S, Koposov A, Sykorad M, Tretiak S (2010) Effect of deprotonation on absorption and emission spectra of Ru(II)-bpy complexes functionalized with carboxyl groups. Phys Chem Chem Phys 12:8902

    Article  PubMed  CAS  Google Scholar 

  31. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:1486

    Article  CAS  Google Scholar 

  32. Lippert E (1955) Dipolmoment und elektronenstruktur von angeregten molekulen. Z Naturforsch A10:541

    Google Scholar 

  33. Mataga N, Kaifu Y, Koizumi M (1955) The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule. Bull Chem Soc Jpn 28:690

    Article  CAS  Google Scholar 

  34. Kapturkiewicz A, Herbich J, Karpiuk J, Nowacki J (1997) Intramolecular radiative and radiationless charge recombination processes in donor-acceptor carbazole derivatives. J Phys Chem A 101:2332

    Article  CAS  Google Scholar 

  35. Marcus RA (1989) Relation between charge transfer absorption and fluorescence spectra and the inverted region. J Phys Chem 93:3078

    Article  CAS  Google Scholar 

  36. Gould IR, Young RH, Miller LJ, Albrecht AC, Farid S (1994) Electronic sructures of exciplexes and excited charge-transfer complexes. J Am Chem Soc 116:8188

    Article  CAS  Google Scholar 

  37. Clemente FR (2011) Private communication (Technical Support Gaussian, Inc.), 31.03.2011

Download references

Acknowledgement

The calculations have been carried out in Wrocław Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant no. 160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kityk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ga̧siorski, P., Danel, K.S., Matusiewicz, M. et al. DFT/TDDFT Study on the Electronic Structure and Spectral Properties of Diphenyl Azafluoranthene Derivative. J Fluoresc 22, 81–91 (2012). https://doi.org/10.1007/s10895-011-0932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-011-0932-1

Keywords

Navigation