Skip to main content
Log in

Spectral and Molecular Modeling Studies on Hydroxybenzaldehydes with Native and Modified Cyclodextrins

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The inclusion complexation of 2-hydroxy-3-methoxybenzaldehyde (2HMB), 4-hydroxy-3-methoxybenzaldehyde (4HMB), 3,4-dimethoxybenzaldehyde (DMB) and 4-hydroxy-3,5-dimethoxybenzaldehyde (HDMB) with α-CD, β-CD, HP-α-CD and HP-β-CD were carried out by UV-Visible, steady-state and time-resolved fluorescence and PM3 methods. All the benzaldehydes shows dual fluorescence in aqueous and CD mediums and 1:1 inclusion complexes were formed with CDs. PM3 geometry optimizations results indicate that the HDMB/CD complex is significantly more favorable than the other complexes. The negative enthalpy changes suggest that the inclusion complexation processes are spontaneous. The geometry of the most stable complex shows that methoxy/OH group of HMBs is entrapped in the less polar CD cavities, while the aldehyde group present in the upper part of the CDs cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szejtli J (1998) Chem Rev 98:1743–1754

    Article  CAS  PubMed  Google Scholar 

  2. Connors KA (1997) Chem Rev 97:1325–1357

    Article  CAS  PubMed  Google Scholar 

  3. Breslow R, Dong SD (1998) Chem Rev 98:1997–2011

    Article  CAS  PubMed  Google Scholar 

  4. Lipkowits KB (1998) Chem Rev 98:1829–1873

    Article  Google Scholar 

  5. Guo QX, Liu L, Cai WS, Jiang Y, Liu YC (1998) Chem Phys Lett 290:514–518

    Article  CAS  Google Scholar 

  6. Liu L, Guo QX (1999) J Phys Chem B 103:3461–3467

    Article  CAS  Google Scholar 

  7. Lu TX, Zhang DP, Dong SJ (1990) Acta Chimca Sinica 48:1071–1074

    CAS  Google Scholar 

  8. Alvira E, Mayoral JA, Gareia JI (1997) Chem Phys Lett 271:178–184

    Article  CAS  Google Scholar 

  9. Guo QX, Liu HY, Ruan XQ, Zheng XQ, Shi YY, Liu YC (1999) J Inclu Phenom 35:487–496

    Article  CAS  Google Scholar 

  10. Dodziuk H, Lukin O, Nowinski KS (2000) J Mol Structure (THEOCHEM) 503:221–230

    Article  CAS  Google Scholar 

  11. Li XS, Liu L, Guo QX, Chu SD, Liu YC (1999) Chem Phys Lett 307:117–120

    Article  CAS  Google Scholar 

  12. Liu L, Li XS, Guo QX, Liu YC (1999) Chin Chem Lett 10:1053–1056

    CAS  Google Scholar 

  13. Song KS, Liu L, Li XS, Guo QX (2000) Res Chem Intermed 26:319–325

    Article  CAS  Google Scholar 

  14. Loftsson T, Duchene D (2007) Int J Pharm 329:1–11

    Article  CAS  PubMed  Google Scholar 

  15. De Lisi R, Lazzara G (2009) Therm Anal Calorim 97:797–803

    Article  Google Scholar 

  16. Novak CS, Ehen Z, Fodor M, Jiesinszky L, Orgovanyi J (2006) J Therm Anal Calorim 84:693–701

    Article  CAS  Google Scholar 

  17. Stalin T, Rajendiran N (2005) Spectrochim Acta, A 61A:3087–3096

    Article  CAS  Google Scholar 

  18. Rajendiran N, Balasunbramanian T (2008) Spectrochim Acta A 69:822–829

    Article  CAS  Google Scholar 

  19. Stalin T, Sivakumar G, Shanthi B, Sekar A, Rajendiran N (2006) J Photochem Photobiol A: Chemistry 177:144–155

    Article  CAS  Google Scholar 

  20. Stalin T, Rajendiran N (2006) J Molecular Structure 794:35–45

    Article  CAS  Google Scholar 

  21. Siva S, Sankaranarayanan RK, Prabhu AAM, Rajendiran N (2009) Indian J Chemistry 48A:1515–1521

    CAS  Google Scholar 

  22. Sankaranarayanan RK, Siva S, Prabhu AAM, Rajendiran N (2010) J Incl Phenom Macrocycl Chem 67:461–470

    Article  CAS  Google Scholar 

  23. Jorgenson MJ, Hartter DR (1963) J Am Chem Soc 85:878–883

    Article  CAS  Google Scholar 

  24. Yagil G (1967) J Phys Chem 71:1034–1038

    Article  CAS  Google Scholar 

  25. Yan C, Li X, Xiu Z, Hao C (2006) J Mol Struct: THEOCHEM 764:95–100

    Article  CAS  Google Scholar 

  26. Sayede AD, Ponchel A, Filardo G, Galia AE, Monflier E (2006) J Mol Struct: THEOCHEM 777:99–106

    Article  CAS  Google Scholar 

  27. Al-Souod KA (2006) J Inclus Phenom Macrocyclic Chem 54:123–127

    Article  CAS  Google Scholar 

  28. Seridi L, Boufelfel A (2011) J Mol Liq 158:151–158

    Article  CAS  Google Scholar 

  29. Dearden JC, Forbes WF (1958) Can J Chem 23:1362–1370

    Article  Google Scholar 

  30. Benesi HA, Hildebrand JH (1949) J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  31. Prabhu AAM, Sankaranarayanan RK, Siva S, Rajendiran N (2009) Spectrochim Acta A 74:484–497

    Article  Google Scholar 

  32. Smith AA, Kannan K, Manavalan R, Rajendiran R (2010) J Fluores 20:809–820

    Article  CAS  Google Scholar 

  33. Prabhu AAM, Sankaranarayanan RK, Venkatesh G, Rajendiran N (2012) J Phys Chem B 116:9061–9074

    Article  CAS  PubMed  Google Scholar 

  34. Prabhu AAM, Rajendiran N (2012) J Fluores 22:1461–1474

    Article  CAS  Google Scholar 

  35. Rajendiran N, Swaminathan M (1996) Ind J Chem 35A:818–824

    CAS  Google Scholar 

  36. Rajendiran N, Swaminathan M (1997) Int J Chem Kinetics 29:861–867

    Article  CAS  Google Scholar 

  37. Bangal PR, Panja S, Chakravorti S (2001) J Photochem Photobiol A Chem 139:5–16

    Article  CAS  Google Scholar 

  38. Panja S, Bangal PR, Chakravorty S (2000) Chem Phys Lett 329:377–385

    Article  CAS  Google Scholar 

  39. Senger M, in Atwood JL, Davies JED & Macnicol DD (Eds) (1984) Inclusion complexes, Vol. II. Academic press, London, pp 231–290

  40. Asiri AM, Karabacak M, Kurt M, Alamry KA (2011) Spectrochim Acta A 82:444–455

    Article  CAS  Google Scholar 

  41. Kosar B, Albayrak C (2011) Spectrochim Acta A 78:160–167

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the CSIR [No. 01(2549)/12/EMR-II], and UGC [F.No. 41-351/2012 (SR)]. The authors thank to Dr. P. Ramamurthy, Director, National centre for ultrafast processes, Madras University for allowing the fluorescence lifetime measurements available for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rajendiran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 611 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenita, M.J., Mohandass, T. & Rajendiran, N. Spectral and Molecular Modeling Studies on Hydroxybenzaldehydes with Native and Modified Cyclodextrins. J Fluoresc 24, 695–707 (2014). https://doi.org/10.1007/s10895-013-1340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1340-5

Keywords

Navigation