Skip to main content
Log in

Tryptophan / Dextran70 Based - Fluorescent Silver Nanoparticles: Synthesis and Physicochemical Properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Nano-size and shape of fluorescent silver nanostructures are important for a wide range of bio-applications, especially as drug delivery systems, imaging and sensing. The aim of the work is to develop a fluorescent silver nano-structured system, synthesized by chemical reduction of aqueous AgNO3 solution by Tryptophan using Dextran 70 as stabilizing agent (SNPsFL). The formed fluorescent nano-system was analyzed by UV-Vis absorption, DLS, SEM, TEM, AFM, steady-state and time resolved fluorescence spectroscopy. TEM analysis showed multi-twined nanoparticle, with the size within 15–40 nm. SNPsFL shows the fluorescence emission at 346 nm, the fluorescence quantum yield, Φ = 0.034 and the integrated fluorescence lifetime, <τ > = 1.82 ns. Riboflavin fluorescence behaviour in the RF/SNPsFL system, has been also studied. The results have relevance in using SNPsFL as a potential marker/emissive system to solve various biological barriers in humans, like drug release and protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391

    Article  CAS  Google Scholar 

  2. Langer R (2001) Drug delivery: drugs on target. Science 293:58–59

    Article  CAS  Google Scholar 

  3. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    Article  Google Scholar 

  4. Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917

    Article  CAS  Google Scholar 

  5. Wong KKY, Liu X (2010) Silver nanoparticles–the real “silver bullet” in clinical medicine? Med Chem Commun 1:125–131

    Article  CAS  Google Scholar 

  6. Jain P, Predeep T (2005) Potential of silver nanoparticles – coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63

    Article  CAS  Google Scholar 

  7. Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infec 62:58–63

    Article  CAS  Google Scholar 

  8. Shrivastava S, Bera T, Roy A, Sing G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9

    Article  Google Scholar 

  9. Duran N, Marcato PD, De Conti R, Alves OL, Costa FTM, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanism of action. J Braz Chem Soc 21:949–959

    Article  CAS  Google Scholar 

  10. de Lima R, Seabra AB, Duran N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879

    Article  CAS  Google Scholar 

  11. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnology Adv 27:76–83

    Article  CAS  Google Scholar 

  12. Khodashenas B, Ghorbani HR (2015) Synthesis of silver nanoparticles with different shapes. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.12.014

  13. Zhang A, Zhang J, Fang Y (2008) Photoluminescence from colloidal silver nanoparticles. J Lumin 128:1635–1640

    Article  CAS  Google Scholar 

  14. Das R, Nath SS, Chakdar D, Gope G, Bhattacharjee R (2010) Synthesis of silver nanoparticles and their optical properties. J Exp Nanosci 5:357–362

    Article  CAS  Google Scholar 

  15. Abdulah A, Annapoorni S (2005) Fluorescent silver nanoparticles via exploding wire technique. Prama J Phys 65:815–819

    Article  Google Scholar 

  16. Zheng J, Dickson RM (2002) Individual water soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982–13983

    Article  CAS  Google Scholar 

  17. Jian Z, Xiang Z, Yongchang W (2005) Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres. Microelectron Eng 77:58–62

    Article  CAS  Google Scholar 

  18. Ashenfelter BA, Desireddy A, Yan SH, Goodson IIIT, Bigioni TP (2015) Fluorescence from molecular silver nanoparticles. J Phys Chem C 119:20728–20734. https://doi.org/10.1021/acs.jpcc.5b05735

    Article  CAS  Google Scholar 

  19. Jacob JA, Naumov S, Mukherjee T, Kapoor S (2011) Preparation, characterization, surface modification and redox reactions of silver nanoparticles in the presence of tryptophan. Colloid Surface B 87:498–504

    Article  CAS  Google Scholar 

  20. Parang Z, Keshavarz A, Farahi S, Elahi SM, Ghoranneviss M, Parhoodeh S (2012) Fluorescence emission spectra of silver and silver/cobalt nanoparticles. Sci Iran 19:943–947

    Article  CAS  Google Scholar 

  21. Mane Gavade SJ, Nikam GH, Sabale SR, Tamhankar BV (2016) Green synthesis of fluorescent silver nanoparticles using acacia Nilotica gum extract for kinetic studies of 4-nitrophenol reduction. Mater Today – Proc 3:4109–4114

    Article  Google Scholar 

  22. Ishida Y, Nakabayashi R, Corpuz RD, Yonezawa T (2017) Water-dispersible fluorescent silver nanoparticles via sputtering deposition over liquid polymer using a very short thiol ligand. Colloid Surfaces A 518:25–29

    Article  CAS  Google Scholar 

  23. Jia K, Shou H, Wang P, Chen W, Liu X (2017) One-step synthesis of fluorescent silver nanoparticles with modulate emission wavelength using oligo–polyarylene ether nitrile as surface capping agent. J Mater Sci Mater Electron 28:16747–16754

    Article  CAS  Google Scholar 

  24. Sing AK, Kanchanapally R, Fan Z, Senapati D, Rai PC (2012) Synthesis of highly fluorescent water-soluble silver nanoparticles for selective detection of Pb (II) at the parts per quadrillion (PPQ) level. Chem Commun 48:9047–9049

    Article  Google Scholar 

  25. Zhou T, Rong M, Cai Z, Yang CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione –stabilized ag nanoclusters and S2− sensing. Nanoscale 4:4103–4106

    Article  CAS  Google Scholar 

  26. Oliveira E, Santos HM, Garcia-Pardo J, Diniz M, Lorenzo J, Rodriguez-Gonzalez B, Capelo JL, Lodeiro C (2013) Synthesis of functionalized of fluorescent silver nanoparticles and their toxicological effect in aquatic environments (goldfish) and HepG2 cells. Front Chem 1:1–11

    Article  CAS  Google Scholar 

  27. Shmarakov IO, Mukha IP, Karavan VK, Chunikhin OY, Marchenko MM, Smirnova NP, Eremenko AM (2014) Tryptophan–assisted synthesis reduces bimetallic gold/silver nanoparticles cytotoxicity and improves biological activity. Nanobiomedicine 1:6. https://doi.org/10.5772/59684

    Article  PubMed  PubMed Central  Google Scholar 

  28. Navarro JR, Werts MH (2013) Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138:583–592

    Article  CAS  Google Scholar 

  29. Chen RF (1967) Fluorescence quntum yields of tryptophan and tyrosine. Anal Lett 1:35–42

    Article  CAS  Google Scholar 

  30. Voicescu M, Ionescu S, Angelescu DG (2012) Spectroscopic and course-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J Nanopart Res 14(1174)

  31. Voicescu M, Angelescu G, Ionescu S, Teodorescu VS (2013) Spectroscopic analysis of the roboflavin-serum albumins interaction on silver nanoparticles. J Nanopart Res 15(1555)

  32. Voicescu M, Heinrich M, Hellwig P (2009) Steady-state and time-resolved fluorescence analysis on tyrosine - histidine model compounds. J Fluoresc 19:257–266

    Article  CAS  Google Scholar 

  33. Voicescu M, El Khoury Y, Martel D, Heinrich M, Hellwig P (2009) Spectroscopic analysis of tyrosine derivatives: on the role of the tyrosine-histidine covalent linkage in cytochrome c oxidase. J Phys Chem B 113:13429–13436

    Article  CAS  Google Scholar 

  34. Lakowicz JR (2000) On spectral relaxation in proteins. Photochem Photobiol 72:421–437

    Article  CAS  Google Scholar 

  35. Albani JR (2014) Origin of tryptophan fluorescence lifetimes part 1. Fluorescence lifetimes origin of tryptophan free in solution. J Fluoresc 24:93–104

    Article  CAS  Google Scholar 

  36. Miura R (2001) Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chem Rec 1:183–194

    Article  CAS  Google Scholar 

  37. Veselkov AN, Evstigneev MP, Rozvadovkaya AQ et al (2005) 1H RMN analysis of the complex formationof aromatic molecules of antibiotic and vitamin in aqueous solution: heteroassociation of actinomycin D and flavin mononucleotide. Biophysics 50:20–27

    CAS  Google Scholar 

  38. Ramu A, Mehta MM, Liu J, Turyan I, Aleksic A (2000) The riboflavin mediated photooxidation of dexorubicin. Cancer Chemother Pharmacol 46:449–458

    Article  CAS  Google Scholar 

  39. Evstigneev MP, Evstigneev VP, Hemander Santiago AA et al (2006) Effect of mixture of caffeine and nicotinamide on the solubility of vitamin B2 in aqueous solution. Eur J Pharm Sci 28:59–66

    Article  CAS  Google Scholar 

  40. Voicescu M, Ionita G, Constantinescu T, Vasilescu M (2006) The oxidative activity of riboflavin studied by luminescence methods: the effect of cysteine, arginine, lysine and histidine amino acids. Rev Roum Chim 51:683–690

    CAS  Google Scholar 

  41. Edwards AM, Silva E, Jofre B et al (1994) Visible light effects on tumoral cells in a culture medium enriched with tryptophan and riboflavin. Photochem Photobiol 24:179–186

    Article  CAS  Google Scholar 

  42. Voicescu M, Ionescu S, Manoiu VS, Anastasescu M, Craciunescu O, Moldovan L (2019) Synthesis and biophysical characteristics of riboflavin/HSA protein system on silver nanoparticles. Mat Sci Eng C 96:30–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done within the research programme “Quantum Chemistry and Molecular Structure” of the Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Voicescu.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voicescu, M., Ionescu, S., Calderon-Moreno, J.M. et al. Tryptophan / Dextran70 Based - Fluorescent Silver Nanoparticles: Synthesis and Physicochemical Properties. J Fluoresc 29, 981–992 (2019). https://doi.org/10.1007/s10895-019-02411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02411-2

Keywords

Navigation