Skip to main content
Log in

Steiner trees for fixed orientation metrics

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the problem of constructing Steiner minimum trees for a metric defined by a polygonal unit circle (corresponding to σ ≥ 2 weighted legal orientations in the plane). A linear-time algorithm to enumerate all angle configurations for degree three Steiner points is given. We provide a simple proof that the angle configuration for a Steiner point extends to all Steiner points in a full Steiner minimum tree, such that at most six orientations suffice for edges in a full Steiner minimum tree. We show that the concept of canonical forms originally introduced for the uniform orientation metric generalises to the fixed orientation metric. Finally, we give an O(σ n) time algorithm to compute a Steiner minimum tree for a given full Steiner topology with n terminal leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brazil M. (2001) Steiner minimum trees in uniform orientation metrics. In: Du D.-Z., Cheng X. (Eds). Steiner Trees in Industries. Kluwer Academic Publishers, pp. 1–27

  2. Brazil, M., Thomas, D.A., Weng, J.F.: Minimum networks in uniform orientation metrics. SIAM J. Comput. 30, 1579–1593 (2000)

    Article  Google Scholar 

  3. Brazil, M., Thomas, D.A., Weng, J.F.: Forbidden subpaths for Steiner minimum networks in uniform orientation metrics. Networks 39, 186–202 (2002)

    Article  Google Scholar 

  4. Brazil, M., Thomas, D.A., Weng, J.F.: Locally minimal uniformly oriented shortest networks. Discrete Appl. Math. 154, 2545–2564 (2006)

    Article  Google Scholar 

  5. Brazil, M., Thomas, D.A., Weng, J.F., Zachariasen, M.: Canonical forms and algorithms for Steiner trees in uniform orientation metrics. Algorithmica 44, 281–300 (2006)

    Article  Google Scholar 

  6. Brazil, M., Winter, P., Zachariasen, M.: Flexibility of Steiner trees in uniform orientation metrics. Networks 46, 142–153 (2005)

    Article  Google Scholar 

  7. Brazil, M., Zachariasen, M.: Steiner trees for fixed orientation metrics. In: Technical Report 06-11, DIKU, Department of Computer Science, University of Copenhagen (2006). www.diku.dk/publikationer/tekniske.rapporter/rapporter/06-11.pdf

  8. Chakerian, G.D., Ghandehari, M.A.: The Fermat problem in Minkowski spaces. Geomet. Dedicata 17, 227–238 (1985)

    Google Scholar 

  9. Chen, H., Cheng, C.K., Kahng, A.B., Mandoiu, I.I., Wang, Q., Yao, B.: The Y-architecture for on-chip interconnect: analysis and methodology. In: Proceedings ACM/IEEE International Conference on Computer-Aided Design (ICCAD), pp. 13–19, 2003

  10. Chen, H., Yao, B., Zhou, F., Cheng, C.K.: The Y-architecture: yet another on-chip interconnect solution. In: Proceedings Asia-Pacific Design Automation Conference, pp. 840–846, 2003

  11. Cieslik, D.: The vertex degrees of Steiner minimal trees in Minkowski planes. In: Topics in Combinatorics and Graph Theory, pp. 201–206. Physica-Verlag, Heidelberg, 1990

  12. Du, D.-Z., Gao, B., Graham, R.L., Liu, Z.-C., Wan, P.-J.: Minimum Steiner trees in normed planes. Discrete Comput. Geomet. 9, 351–370 (1993)

    Article  Google Scholar 

  13. Du, D.Z., Hwang, F.K.: Reducing the Steiner problem in a normed space. SIAM J. Comput. 21, 1001–1007 (1992)

    Article  Google Scholar 

  14. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14(2), 255–265 (1966)

    Article  Google Scholar 

  15. Hwang, F.K.: On Steiner minimal trees with rectilinear distance. SIAM J. Appl. Math. 30, 104–114 (1976)

    Article  Google Scholar 

  16. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner tree problem. Annals of Discrete Mathematics 53. Elsevier Science Publishers, Netherlands (1992)

    Google Scholar 

  17. Koh, C.-K.: Steiner Problem in Octilinear Routing Model. Master’s thesis, National University of Singapore (1995)

  18. Lee, D.T., Shen, C.F.: The Steiner minimal tree problem in the λ-geometry plane. In: ISAAC’96, Lecture Notes in Computer Science 1178, pp. 247–255 (1996)

  19. Lee, D.T., Shen, C.F., Ding, C.L.: On Steiner tree problem with 45 degree routing. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1680–1683, 1995

  20. Li, Y.Y., Leung, K.S., Wong, C.K.: Steiner trees in general nonuniform orientations. Computing 66, 41–78 (2001)

    Article  Google Scholar 

  21. Lin, G.-H., Xue, G.: The Steiner tree problem in λ4-geometry plane. In: ISAAC’98, Lecture Notes in Computer Science 1533, pp. 327–337, 1998

  22. Lin, G.-H., Xue, G.: A linear time algorithm for computing hexagonal Steiner minimum trees for terminals on the boundary of a regular hexagon. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 196–199, 2000

  23. Lin, G.-H., Xue, G.: Optimal layout of hexagonal minimum spanning trees in linear time. In: Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), pp. 633–636, 2000

  24. Lin, G.-H., Xue, G.: Reducing the Steiner problem in four uniform orientations. Networks 35, 287–301 (2000)

    Article  Google Scholar 

  25. Lin, G.-H., Xue, G., Zhou, D.: Approximating hexagonal Steiner minimal trees by fast optimal layout of minimum spanning trees. In: International Conference on Computer Design (ICCD), pp. 392–398, 1999

  26. Martini, H., Swanepoel, K.J., Weiss, G.: The Fermat-Torricelli problem in normed planes and spaces. J. Optim. Theory Appl. 115, 283–314 (2002)

    Article  Google Scholar 

  27. Nielsen, B.K., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Proceedings of the 10th European Symposium on Algorithms, Lecture Notes in Computer Science, vol. 2461, pp. 760–772. Springer (2002)

  28. Sarrafzadeh, M., Wong, C.K.: Hierarchical Steiner tree construction in uniform orientations. IEEE Trans. Comput. Aid. Des. 11, 1095–1103 (1992)

    Article  Google Scholar 

  29. Swanepoel, K.J.: The local Steiner problem in normed planes. Networks 36, 104–113 (2000)

    Article  Google Scholar 

  30. Teig, S.: The X architecture: not your father’s diagonal wiring. In: International Workshop on System-Level Interconnect Prediction (SLIP), pp. 33–37, 2002

  31. Widmayer, P., Wu, Y.F., Wong, C.K.: On some distance problems in fixed orientations. SIAM J. Comput. 16(4), 728–746 (1987)

    Article  Google Scholar 

  32. X Initiative Home Page. http://www.xinitiative.com, 2001

  33. Xue, G., Thulasiraman, K.: Computing the shortest network under a fixed topology. IEEE Trans. Comput. 51, 1117–1120 (2002)

    Google Scholar 

  34. Yildiz, M.C., Madden, P.H.: Preferred direction Steiner trees. In: Proceedings of the 11th ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 56–61, 2001

  35. Zachariasen, M.: Rectilinear full Steiner tree generation. Networks 33, 125–143 (1999)

    Article  Google Scholar 

  36. Zachariasen, M.: The rectilinear Steiner tree problem: a tutorial. In: Du, D.-Z., Cheng, X.(eds) Steiner Trees in Industries, pp. 467–507. Kluwer Academic Publishers, Boston (2001)

    Google Scholar 

  37. Zachariasen, M.: Comment on “Computing the shortest network under a fixed topology”. IEEE Trans. Comput. 55, 783–784 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zachariasen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazil, M., Zachariasen, M. Steiner trees for fixed orientation metrics. J Glob Optim 43, 141–169 (2009). https://doi.org/10.1007/s10898-008-9305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-008-9305-y

Keywords

Navigation