Skip to main content
Log in

New multi-commodity flow formulations for the pooling problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The pooling problem is a nonconvex nonlinear programming problem with numerous applications. The nonlinearities of the problem arise from bilinear constraints that capture the blending of raw materials. Bilinear constraints are well-studied and significant progress has been made in solving large instances of the pooling problem to global optimality. This is due in no small part to reformulations of the problem. Recently, Alfaki and Haugland proposed a multi-commodity flow formulation of the pooling problem based on input commodities. The authors proved that the new formulation has a stronger linear relaxation than previously known formulations. They also provided computational results which show that the new formulation outperforms previously known formulations when used in a global optimization solver. In this paper, we generalize their ideas and propose new multi-commodity flow formulations based on output, input and output and (input, output)-commodities. We prove the equivalence of formulations, and we study the partial order of formulations with respect to the strength of their LP relaxations. In an extensive computational study, we evaluate the performance of the new formulations. We study the trade-off between disaggregating commodities and therefore increasing the size of formulations versus strengthening the relaxed linear programs and improving the computational performance of the nonlinear programs. We provide computational results which show that output commodities often outperform input commodities, and that disaggregating commodities further only marginally strengthens the linear relaxations. In fact, smaller formulations often show a significantly better performance when used in a global optimization solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin. http://nbn-resolving.de/urn:nbn:de:0297-zib-11129 (2009)

  2. Adhya, N., Tawarmalani, M., Sahinidis, N.V.: A Lagrangian approach to the pooling problem. Ind. Eng. Chem. Res. 38(5), 1956–1972 (1999)

    Article  Google Scholar 

  3. Al-Khayyal, F.A.: Jointly constrained bilinear programs and related problems: an overview. Comput. Math. Appl. 19(11), 53–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alfaki, M.: Generalized pooling problem instances. http://www.ii.uib.no/~mohammeda/gpooling/. Accessed 13 Jan 2016

  6. Alfaki, M.: Standard pooling problem instances. http://www.ii.uib.no/~mohammeda/spooling/. Accessed 13 Jan 2016

  7. Alfaki, M.: Models and solution methods for the pooling problem. Ph.D. thesis, The University of Bergen. http://hdl.handle.net/1956/5847 (2012)

  8. Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56(3), 917–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alfaki, M., Haugland, D.: A cost minimization heuristic for the pooling problem. Ann. Oper. Res. 222(1), 73–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Almutairi, H., Elhedhli, S.: A new Lagrangean approach to the pooling problem. J. Glob. Optim. 45(2), 237–257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

    Article  MATH  Google Scholar 

  14. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baker, T.E., Lasdon, L.S.: Successive linear programming at Exxon. Manag. Sci. 31(3), 264–274 (1985)

    Article  MATH  Google Scholar 

  16. Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bergamini, M.L., Aguirre, P., Grossmann, I.E.: Logic-based outer approximation for globally optimal synthesis of process networks. Comput. Chem. Eng. 29(9), 1914–1933 (2005)

    Article  Google Scholar 

  18. Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS—A User’s Guide (2015)

  19. Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Floudas, C.A., Aggarwal, A., Ciric, A.R.: Global optimum search for nonconvex NLP and MINLP problems. Comput. Chem. Eng. 13(10), 1117–1132 (1989)

    Article  Google Scholar 

  22. Floudas, C.A., Visweswaran, V.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-I. Theory. Comput. Chem. Eng. 14(12), 1397–1417 (1990)

    Article  Google Scholar 

  23. Floudas, C.A., Visweswaran, V.: Primal-relaxed dual global optimization approach. J. Optim. Theory Appl. 78(2), 187–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Foulds, L.R., Haugland, D., Jörnsten, K.: A bilinear approach to the pooling problem. Optimization 24(1–2), 165–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. (2003)

  26. Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise-linear relaxations for pooling problems. Ind. Eng. Chem. Res. 48(12), 5742–5766 (2009)

    Article  Google Scholar 

  27. Gupte, A.: Mixed integer bilinear programming with applications to the pooling problem. Ph.D. thesis, Georgia Institute of Technology. http://hdl.handle.net/1853/45761/ (2012)

  28. Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. http://www.optimization-online.org/DB_HTML/2015/04/4883.html (2015)

  29. Hasan, M.M.F.: Modeling and optimization of a liquefied natural gas process. Ph.D. thesis, National University of Singapore. scholarbank.nus.edu.sg/handle/10635/17334 (2010)

  30. Hasan, M.M.F., Karimi, I.A.: Piecewise linear relaxation of bilinear programs using bivariate partitioning. AIChE J. 56(7), 1880–1893 (2010)

    Article  Google Scholar 

  31. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  32. IBM Corporation. IBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual. Version 12 Release 6, (2013)

  33. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30(4), 650–673 (2006)

    Article  Google Scholar 

  34. Kawajir, Y., Laird, C., Wächter, A.: Introduction to Ipopt: a tutorial for downloading, installing, and using Ipopt. Revision 2020 (2011)

  35. Kolodziej, S.P., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57(4), 1039–1063 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lasdon, L.S., Waren, A.D., Sarkar, S., Palacios, F.: Solving the pooling problem using generalized reduced gradient and successive linear programming algorithms. SIGMAP Bull. 27, 9–15 (1979)

    Article  Google Scholar 

  37. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103(2), 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  39. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29(2), 125–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem. AIChE J. 52(3), 1027–1037 (2006)

    Article  Google Scholar 

  41. Misener, R.: Novel global optimization methods: theoretical and computational studies on pooling problems with environmental constraints. Ph.D. thesis, Princeton University. http://arks.princeton.edu/ark:/88435/dsp015q47rn787 (2012)

  42. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)

    Article  Google Scholar 

  44. Palacios-Gomez, F., Lasdon, L., Engquist, M.: Nonlinear optimization by successive linear programming. Manag. Sci. 28(10), 1106–1120 (1982)

    Article  MATH  Google Scholar 

  45. Pham, V., Laird, C., El-Halwagi, M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48(4), 1973–1979 (2009)

    Article  Google Scholar 

  46. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, volume 31 of Nonconvex Optimization and its Applications. Springer, New York (1999)

  47. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2(4), 379–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, volume 31 of Nonconvex Optimization and its Applications. Springer, New York (2002)

    Book  MATH  Google Scholar 

  49. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99(3), 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Teles, J.P., Castro, P.M., Matos, H.A.: Multi-parametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55(2), 227–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Vielma, J.P.: Mixed integer linear programming formulation techniques. SIAM Rev. 57, 3–57 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Vielma, J.P., Ahmed, S., Nemhauser, G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 58(2), 303–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Visweswaran, V.: MINLP: applications in blending and pooling problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1399–1405. Springer, New York (2001)

    Chapter  Google Scholar 

  54. Visweswaran, V., Floudas, C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs-II. Application of theory and test problems. Comput. Chem. Eng. 14(12), 1419–1434 (1990)

    Article  Google Scholar 

  55. Visweswaran, V., Floudas, C.A.: New properties and computational improvement of the GOP algorithm for problems with quadratic objective functions and constraints. J. Glob. Optim. 3(4), 439–462 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  56. Visweswaran, V., Floudas, C.A.: Computational results for an efficient implementation of the GOP algorithm and its variants. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, volume 9 of Nonconvex Optimization and its Applications, pp. 111–153. Springer, New York (1996)

  57. Visweswaran, V., Floudas, C.A.: New formulations and branching strategies for the GOP algorithm. In: Grossmann, I.E. (ed.) Global Optimization in Engineering Design, volume 9 of Nonconvex Optimization and its Applications, pp. 75–109. Springer, New York (1996)

  58. Visweswaran, V., Floudas, C.A.: cGOP: a deterministic global optimization package. User’s guide. Version 1.1 (1997)

  59. Wicaksono, D.S., Karimi, I.A.: Modeling piecewise under- and overestimators for bilinear process network synthesis via mixed-integer linear programming. In: Braunschweig, B., Joulia, X. (eds.) \(18^{th}\) European Symposium on Computer Aided Process Engineering-ESCAPE 18. Lyon, France (2008)

  60. Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under-and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

  61. Yıldız, S., Vielma, J.P.: Incremental and encoding formulations for mixed integer programming. Oper. Res. Lett. 41, 654–658 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, J., Kim, N.-H., Lasdon, L.: An improved successive linear programming algorithm. Manag. Sci. 31(10), 1312–1331 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the ARC Linkage Grant No. LP110200524, Hunter Valley Coal Chain Coordinator (hvccc.com.au) and Triple Point Technology (tpt.com). The authors would like to thank Dr Hamish Waterer for his contributions, both computationally and theoretically, to this research. The authors would also like to thank the two anonymous referees for their helpful comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Rigterink.

Appendix: Detailed computational results

Appendix: Detailed computational results

Table 10 Relative LP objectives and their baselines for all formulations and instances
Table 11 Total solve times of the NLP, relative NLP lower and upper bounds and their baselines for all formulations and instances
Table 12 Average relative LP objectives and number of times a formulation found the maximum LP objective for a set of instances
Table 13 Average relative NLP lower bounds and number of times a formulation found the maximum NLP lower bound for a set of instances
Table 14 Average relative NLP upper bounds and number of times a formulation found the minimum NLP upper bound for a set of instances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, N., Kalinowski, T. & Rigterink, F. New multi-commodity flow formulations for the pooling problem. J Glob Optim 66, 669–710 (2016). https://doi.org/10.1007/s10898-016-0404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0404-x

Keywords

Navigation