Skip to main content
Log in

A polynomially solvable case of the pooling problem

  • Short Communication
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Answering a question of Haugland, we show that the pooling problem with one pool and a bounded number of inputs can be solved in polynomial time by solving a polynomial number of linear programs of polynomial size. We also give an overview of known complexity results and remaining open problems to further characterize the border between (strongly) NP-hard and polynomially solvable cases of the pooling problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Alfaki, M., Haugland, D.: A multi-commodity flow formulation for the generalized pooling problem. J. Glob. Optim. 56(3), 917–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfaki, M., Haugland, D.: Strong formulations for the pooling problem. J. Glob. Optim. 56(3), 897–916 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., Mladenović, N.: Pooling problem: alternate formulations and solution methods. Manag. Sci. 50(6), 761–776 (2004)

    Article  MATH  Google Scholar 

  4. Ben-Tal, A., Eiger, G., Gershovitz, V.: Global minimization by reducing the duality gap. Math. Program. 63(1–3), 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boland, N., Kalinowski, T., Rigterink, F.: Discrete flow pooling problems in coal supply chains. In: Weber, T., McPhee, M.J., Anderssen, R.S. (eds.) MODSIM2015, 21st International Congress on Modelling and Simulation, pp. 1710–1716. Modelling and Simulation Society of Australia and New Zealand, Gold Coast (2015)

    Google Scholar 

  6. Boland, N., Kalinowski, T., Rigterink, F.: New multi-commodity flow formulations for the pooling problem. J. Glob. Optim. Adv. Online Publ. (2016). doi:10.1007/s10898-016-0404-x

    Google Scholar 

  7. Boland, N., Kalinowski, T., Rigterink, F., Savelsbergh, M.: A special case of the generalized pooling problem arising in the mining industry. Optimization Online e-prints. (2015). http://www.optimization-online.org/DB_HTML/2015/07/5025.html

  8. Buck, R.C.: Partition of space. Am. Math. Mon. 50(9), 541–544 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Witt, C.W., Lasdon, L.S., Waren, A.D., Brenner, D.A., Melhem, S.A.: OMEGA: an improved gasoline blending system for Texaco. Interfaces 19(1), 85–101 (1989)

    Article  Google Scholar 

  10. Dey, S.S., Gupte, A.: Analysis of MILP techniques for the pooling problem. Oper. Res. 63(2), 412–427 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupte, A., Ahmed, S., Dey, S. S., Cheon, M. S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim., to appear. Preprint: http://www.optimization-online.org/DB_HTML/2015/04/4883.html

  12. Haugland, D.: The hardness of the pooling problem. In: Casado, L.G., García, I., Hendrix, E.M.T. (eds.) Proceedings of the XII Global Optimization Workshop Mathematical and Applied Global Optimization, MAGO 2014, pp. 29–32. Málaga, Spain (2014)

    Google Scholar 

  13. Haugland, D.: The computational complexity of the pooling problem. J. Glob. Optim. 64(2), 199–215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haugland, D., Hendrix, E.M.T.: Pooling problems with polynomial-time algorithms. J. Optim. Theory Appl. (2016). doi:10.1007/s10957-016-0890-5

    MathSciNet  MATH  Google Scholar 

  15. Haverly, C.A.: Studies of the behavior of recursion for the pooling problem. SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  16. Rigby, B., Lasdon, L.S., Waren, A.D.: The evolution of Texaco’s blending systems: from OMEGA to StarBlend. Interfaces 25(5), 64–83 (1995)

    Article  Google Scholar 

  17. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Nonconvex Optimization and its Applications, vol. 65. Springer, New York (2002)

    MATH  Google Scholar 

  18. Visweswaran, V.: MINLP: applications in blending and pooling problems. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 2114–2121. Springer, New York (2009)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by the ARC Linkage Grant No. LP110200524, Hunter Valley Coal Chain Coordinator (hvccc.com.au) and Triple Point Technology (tpt.com). We would like to thank the two anonymous referees for their helpful comments which improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Rigterink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boland, N., Kalinowski, T. & Rigterink, F. A polynomially solvable case of the pooling problem. J Glob Optim 67, 621–630 (2017). https://doi.org/10.1007/s10898-016-0432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0432-6

Keywords

Navigation