Skip to main content
Log in

A Novel Method For Fabricating Cr-Doped Alpha-Al2O3 Nanoparticles: Green Approach To Nanotechnology

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The aim of this work was to produce Cr-doped alpha-alumina nanoparticles using a modified sol–gel method that employs the complexation capacity of natural organic matter (NOM). For this synthesis, the initial pH of the sol was adjusted to 4.0, and final calcination of the xerogel was performed at 1100 °C for 4 h. XRD and FTIR analyses confirmed that the hexagonal α-Al2O3 phase was produced under these conditions. Chromaticity analyses revealed that more intense pink colors were obtained for the samples with higher Cr concentrations. XANES measurements showed that the oxidation state of chromium in the alumina matrix was strongly dependent on the dopant concentration and that it was possible to produce samples free from Cr(VI). The photo- and radioluminescence spectra of the nanoparticles were found to be sensitive to the dopant concentration. All these findings demonstrated that the synthesis procedure using NOM could provide considerable environmental, technological, and economic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.L. Tarwal, P.R. Jadhav, S.A. Vanalakar, S.S. Kalagi, R.C. Pawar, J.S. Shaikh, S.S. Mali, D.S. Dalavi, P.S. Shinde, P.S. Patil, Powder Technol. 208 (2011)

  2. A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, J. Lumin. 90 (2000)

  3. F. Chouli, I. Radja, E. Morallon, A. Benyoucef, Synth. Charact. Electrochem. Prop. (2015). doi:10.1002/pc.23837.

    Google Scholar 

  4. S. Benykhlef, A. Bekhoukh, R. Berenguer, A. Benyoucef, E. Morallon, Synth. Charact. Electrochem. Stud. 294 (2016)

  5. P. Kathirvel, J. Chandrasekaran, D. Manoharan, J. Alloys Compd. 590 (2014)

  6. B. Huang, C.H. Bartholomew, B.F. Woodfield, Microporous Mesoporous Mater. 183 (2014)

  7. X. Fu, W. Tang, L. Ji, C. Shifu, Chem. Eng. J. 180 (2012)

  8. N. Mandlik, P.D. Sahare, M.S. Kulkarni, B.C. Bhatt, V.N. Bhoraskar, S.D. Dhole, J. Lumin. 146 (2014)

  9. M.P. Chougaonkar, B.C. Bhatt, Radiat. Prot. Dosimetry 112 (2004)

  10. J.S. Lee, H.S. Kin, N. Park, Chem. Eng. J. 230 (2013)

  11. P.B.R. Gasparian, F. Vanhavere, E.G. Yukihara, Radiat. Meas. 47 (2012)

  12. N.S. Wang, M. Shao, G. Shao, Chem. Phys. Lett. 460 (2008)

  13. X. Mi, X. Zhang, X. Ba, Adv. Powder Technol. 20 (2009)

  14. N. Salah, H.Z. Khan, S.S. Habib, Nuclear Instrum. Methods Phys. Res. Sect. B. 269 (2009)

  15. Y. Marinova, J.M. Hohemberger, E. Cordoncillo, P. Escribano, J.B. Carda, J. Eur. Ceram. Soc. 23 (2003)

  16. G.K. Naika, P.M. Mishra, K. Parida, Chem. Eng. J. 229 (2013)

  17. M. Faramarzi, A. Sadighi, Adv. Colloid Interface Sci. 189 (2013)

  18. M. Nidhin, K.J. Sreeram, B. Nair, Chem. Eng. J. 185 (2012)

  19. H. Liu, J. Huang, D. Sun, Chem. Eng. J. 209 (2012)

  20. G. da C. Cunha, L.P.C Romão, Z.S. Macedo, Powder Technol. 254 (2014)

  21. A.M. Gomes, M.E.G. Valerio, J.F.R. Queiruga, Z.S. Macedo, Mater. Chem. Phys. 142 (2013)

  22. J. Li, Y.B. Pan, C.S. Xiang, Ceram. Intl. 32 (2006)

  23. I. Radja, H. Djelad, E. Morallon, A. Benyoucef, Synth. Met. 202 (2015)

  24. H.S. Hafez, E. El-fadaly, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95 (2012)

  25. S. Sivakumar, A. Venkatesan, P. Soundhirarajan, P.C. Khatiwada. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151 (2015)

  26. K.H. Tan, Principles of Soil Chemistry, 2nd edn. (CRC Press, New York, 2014), pp. 46–52

  27. M.A. Gomes, M.E.G. Valerio, Z.S. Macedo, J. Nanomaterials 2011 (2011)

  28. C. Mayrinck, D.P. Santos, S.J.L. Ribeiro, M.A. Schiavon, J.L. Ferrari, Ceram. Intl. 40 (2014)

  29. M.T. Hernández, M. González, J. Eur. Ceram. Soc. 22 (2002)

  30. G. Rani, P.D. Sahare, Adv. Powder Technol. 25, 767–772 (2014)

    Article  CAS  Google Scholar 

  31. A. Patra, R.E. Tallman, B.A. Weinstein, Optic. Mater. 27 (2005)

  32. A. Zuo, P.W. Jagodzinski, Appl. Spectrosc. 56 (2002)

  33. A.B. Kulinkin, S.P. Feofilov, R.I. Zakharchenya, Phys. Solid State 42 (2000).

  34. C. Zhu, S. Hosokai, T. Akiyama, J. Hydrogen Energy 37 (2012)

  35. Q. Liu, Q.H. Yang, G.G. Zhao, J. Alloys Compd. 579 (2013)

  36. F. Liu, J. Huang, J. Jiang, J. Eur. Ceram. Soc. 33 (2013)

  37. Q. Liu, Q. Yang, G. Zhao, S. Lu, J. Alloys Compd. 582 (2014)

  38. T. Cheng, H.E. Allen, J. Environ. Manage. 80 (2006)

  39. C. Pan, S. Chen, P. Shen, J. Cryst. Growth 310 (2014)

  40. K. Fujita, Y. Tokudome, K. Nakanishi, J. Non-cryst. Solids 354 (2008)

Download references

Acknowledgements

The authors wish to thank CMNano-UFS for access to microscopy facilities, LNLS, and the Brazilian funding agencies CNPq, FAPITEC/SE, and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziele C. da Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, G.C., Abreu, C.M., Peixoto, J.A. et al. A Novel Method For Fabricating Cr-Doped Alpha-Al2O3 Nanoparticles: Green Approach To Nanotechnology. J Inorg Organomet Polym 27, 674–684 (2017). https://doi.org/10.1007/s10904-017-0510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0510-3

Keywords

Navigation