Skip to main content
Log in

Composite Nanoarchitectonics of Graphene Oxide for Better Understanding on Structural Effects on Photocatalytic Performance for Methylene Blue Dye

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The fabrication of graphene/graphene oxide bounded metal nanostructures, to form hybrid composites, and their utilization for the remediation of organic dyes have been received much attention because of their economic, safety, and environmental points of view. The aim of the present study was the synthesis and structural characterization of various types of graphene oxide (GO) and GO nanocomposites and the analysis of their morphology and photocatalytic activities. The GO nanoparticles and GO bounded Au and ZnO nanocomposites have been synthesized by the modified hummers, and ultrasonic-assisted solution methods. The structural investigation of the synthesized nanocomposites was carried out using X-ray diffraction, Fourier transforms infrared radiation, and transmission electron microscopy. Meanwhile, their photocatalytic activities were investigated, using various models, by the degradation of methylene blue (MB) under simulated visible–ultraviolet irradiation. The maximum efficiency and performance of the photodegradation were observed for the porous graphene oxide (PGO) nanoparticles. The models such as pseudo-first and second-order, intra-particle diffusion, Boyd, and Elovic have applied to detailed study the mechanisms of the photocatalytic degradation process. According to the experimental results, the PGO has a high performance for MB-based wasted water compared to other investigated catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Mamo, M.J. García-Galán, M. Stefani, S. Rodríguez-Mozaz, D. Barceló, H. Monclús, I. Rodriguez-Roda, J. Comas, Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation. Chem. Eng. J. 331, 450–461 (2018)

    CAS  Google Scholar 

  2. J.O. Tijani, O.O. Fatoba, L.F. Petrik, A review of pharmaceuticals and endocrine-disrupting compounds: sources, effects, removal, and detections. Water Air Soil Pollut. 224, 1–29 (2013)

    CAS  Google Scholar 

  3. L. Christenson, R. Sims, Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29, 686–702 (2011)

    CAS  PubMed  Google Scholar 

  4. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)

    CAS  Google Scholar 

  5. A.I. Stefanakis, Constructed wetlands for sustainable wastewater treatment in hot and arid climates: opportunities, challenges and case studies in the Middle East. Water 12, 1665 (2020)

    CAS  Google Scholar 

  6. J.K. Cronk, Constructed wetlands to treat wastewater from dairy and swine operations: a review. Agric. Ecosyst. Environ. 58, 97–114 (1996)

    Google Scholar 

  7. A.A. Juwarkar, S.K. Singh, A. Mudhoo, A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Bio/Technol. 9, 215–288 (2010)

    CAS  Google Scholar 

  8. J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, A review of combined advanced oxidation technologies for the removal of organic pollutants from water. Water Air Soil Pollut. 225, 1–30 (2014)

    CAS  Google Scholar 

  9. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, A.Y. Abdel-Latief, A.A.-R Mohamed, K. Mojsilovi´c, W.J. St'epniowski, Fabrication, characterization and photocatalytic activity of copper oxide nanowires formed by anodization of copper foams. Materials 14, 5030 (2021). https://doi.org/10.3390/ma14175030

    Google Scholar 

  10. J. Gupta, K.C. Barick, D. Bahadur, Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. J. Alloys Compd. 509, 6725–6730 (2011)

    CAS  Google Scholar 

  11. S. Patra, E. Roy, A. Tiwari, R. Madhuri, P.K. Sharma, 2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosens. Bioelectron. 89, 8–27 (2017)

    CAS  PubMed  Google Scholar 

  12. H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6, 1–7 (2016)

    CAS  Google Scholar 

  13. Z. Yuan, X. Xiao, J. Li, Z. Zhao, Yu. Dingshan, Q. Li, Self-assembled graphene-based architectures and their applications. Adv. Sci. 5, 1700626 (2018)

    Google Scholar 

  14. X. An, X. Yu, C.Y. Jimmy, G. Zhang, CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. J. Mater. Chem. A 1, 5158–5164 (2013)

    CAS  Google Scholar 

  15. S. Ameen, M.S. Akhtar, H.-K. Seo, H.S. Shin, Advanced ZnO–graphene oxide nanohybrid and its photocatalytic applications. Mater. Lett. 100, 261–265 (2013)

    CAS  Google Scholar 

  16. X. Li, Q. Wang, Y. Zhao, Wu. Wei, J. Chen, H. Meng, Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. J. Colloid Interface Sci. 411, 69–75 (2013)

    CAS  PubMed  Google Scholar 

  17. V.N. Nguyen, D.T. Tran, M.T. Nguyen, T.T.T. Le, M.N. Ha, M.V. Nguyen, T.D. Pham, Enhanced photocatalytic degradation of methyl orange using ZnO/graphene oxide nanocomposites. Res. Chem. Intermed. 44, 3081–3095 (2018)

    CAS  Google Scholar 

  18. S. Kumar, R.D. Kaushik, L.P. Purohit, Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye. J. Mol. Liquids 327, 114814 (2021)

    CAS  Google Scholar 

  19. N.A.F. Al-Rawashdeh, O. Allabadi, M.T. Aljarrah, Photocatalytic activity of graphene oxide/zinc oxide nanocomposites with embedded metal nanoparticles for the degradation of organic dyes. ACS Omega 5, 28046–28055 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. B.A. Aragaw, D. Atsedemariam, Copper/reduced graphene oxide nanocomposite for high performance photocatalytic methylene blue dye degradation. Ethiop. J. Sci. Technol. 12, 125–137 (2019)

    Google Scholar 

  21. H. Li, F. Zhao, T. Liu, N. Zhang, Y. Wang, Design of novel structured Au/gC3N4 nanosheet/reduced graphene oxide nanocomposites for enhanced visible light photocatalytic activities. Sustain. Energy Fuels 4, 4086–4095 (2020)

    CAS  Google Scholar 

  22. N. Zhang, Yu. Haixia Qiu, W.W. Liu, Yi. Li, X. Wang, J. Gao, Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J. Mater. Chem. 21, 11080–11083 (2011)

    CAS  Google Scholar 

  23. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, Lu. Wei, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    CAS  PubMed  Google Scholar 

  24. B. Straumal, A. Mazilkin, S. Protasova, A. Myatiev, P. Straumal, E. Goering, B. Baretzky, Influence of texture on the ferromagnetic properties of nanograined ZnO films. Phys Status Solidi (B) 248, 1581–1586 (2011)

    CAS  Google Scholar 

  25. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    CAS  PubMed  Google Scholar 

  26. R. Hack, C.H. Correia, R.A. Zanon, S.H. Pezzin, Characterization of graphene nanosheets obtained by a modified Hummer’s method. Matéria (Rio de Janeiro) (2018). https://doi.org/10.1590/S1517-707620170001.0324

    Article  Google Scholar 

  27. J.L. Gascho, S.F. Costa, A.A. Recco, S.H. Pezzin, Graphene oxide films obtained by vacuum filtration: X-ray diffraction evidence of crystalline reorganization. J. Nanomater. (2019). https://doi.org/10.1155/2019/5963148

    Article  Google Scholar 

  28. H. Zhu, Ru. Jiang, Fu. Yongqian, Y. Guan, J. Yao, L. Xiao, G. Zeng, Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286, 41–48 (2012)

    CAS  Google Scholar 

  29. A. Fisal, W.M. Daud, M.A. Ahmad, R. Radzi, Using cocoa (Theobroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: kinetics and equilibrium studies. Chem. Eng. J. 178, 461–467 (2011)

    CAS  Google Scholar 

  30. A.A. Darwish, M. Rashad, H.A. Al-Aoh, Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies. Dyes Pigments 160, 563–571 (2019)

    CAS  Google Scholar 

  31. M. Rashad, H.A. Al-Aoh, Promising adsorption studies of bromophenol blue using copper oxide nanoparticles. Desalin. Water Treat. 139, 360–368 (2019)

    CAS  Google Scholar 

  32. H. Yan, J. Hou, Fu. Zhengping, B. Yang, P. Yang, K. Liu, M. Wen, Y. Chen, Fu. Shengquan, F. Li, Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation. Mater. Res. Bull. 44, 1954–1958 (2009)

    CAS  Google Scholar 

  33. H.A. Al-Aoh, M.J. Maah, R. Yahya, M.R. Abas, A comparative investigation on adsorption performances of activated carbon prepared from coconut husk fiber and commercial activated carbon for acid red 27 dye. Asian J. Chem. 25, 9582 (2013)

    CAS  Google Scholar 

  34. L. Zhang, L. Du, X. Yu, S. Tan, X. Cai, P. Yang, Y. Gu, W. Mai, Significantly enhanced photocatalytic activities and charge separation mechanism of Pd-decorated ZnO–graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 6, 3623–3629 (2014)

    CAS  PubMed  Google Scholar 

  35. Y. Bulut, Z. Tez, Adsorption studies on ground shells of hazelnut and almond. J. Hazard. Mater. 149, 35–41 (2007)

    CAS  PubMed  Google Scholar 

  36. G. Akkaya, A. Özer, Biosorption of Acid Red 274 (AR 274) on Dicranella varia: determination of equilibrium and kinetic model parameters. Process Biochem. 40, 3559–3568 (2005)

    CAS  Google Scholar 

  37. G.E. Boyd, A.W. Adamson, L.S. Myers Jr., The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1. J. Am. Chem. Soc. 69, 2836–2848 (1947)

    CAS  PubMed  Google Scholar 

  38. K. Ariga, Nanoarchitectonics: what’s coming next after nanotechnology? Nanoscale Horizons 6(5), 364–378 (2021)

    CAS  PubMed  Google Scholar 

  39. M. Umar, H.A. Aziz, Organic pollutants-monitoring, risk and treatment, in Photocatalytic degradation of organic pollutants in water. (IntechOpen, London, 2013)

    Google Scholar 

  40. J.-C. Deinert, Zinc Oxide Surfaces and Interfaces: Electronic Structure and Dynamics of Excited States. Doctoral thesis. (Berlin, 2016). pp. 42–44

  41. M.N. Chong et al., Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    CAS  PubMed  Google Scholar 

  42. N. Serpone, Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol. A 104(1–3), 1–12 (1997)

    CAS  Google Scholar 

  43. S.M. Jiménez et al., State of the art of produced water treatment. Chemosphere 192, 186–208 (2018)

    PubMed  Google Scholar 

  44. B.A. Bhanvase, T.P. Shende, S.H. Sonawane, A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environ. Technol. Rev. 6(1), 1–14 (2017)

    CAS  Google Scholar 

  45. M.-Q. Yang, Xu. Yi-Jun, Basic principles for observing the photosensitizer role of graphene in the graphene–semiconductor composite photocatalyst from a case study on graphene–ZnO. J. Phys. Chem. C 117(42), 21724–21734 (2013)

    CAS  Google Scholar 

  46. K.-Q. Lu et al., Insight into the origin of boosted photosensitive efficiency of graphene from the cooperative experiment and theory study. J. Phys. Chem. C 120(48), 27091–27103 (2016)

    CAS  Google Scholar 

  47. K.-Q. Lu et al., Roles of graphene oxide in heterogeneous photocatalysis. ACS Mater. Au 1(1), 37–54 (2021)

    CAS  Google Scholar 

  48. Y. Zhao et al., A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 51(45), 11371–11375 (2012)

    CAS  Google Scholar 

  49. D. Kong et al., Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption 22(8), 1043–1050 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elnaiem, A.M., Abd El-Baki, R.F., Alsaaq, F. et al. Composite Nanoarchitectonics of Graphene Oxide for Better Understanding on Structural Effects on Photocatalytic Performance for Methylene Blue Dye. J Inorg Organomet Polym 32, 1191–1205 (2022). https://doi.org/10.1007/s10904-021-02146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02146-3

Keywords

Navigation