Skip to main content

Advertisement

Log in

Reversible H2 Storage Capacity of Ni Functionalized Carbyne (C10) Complex

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, we explored the reversible hydrogen storage capacity of Ni functionalized C10 carbyne complex through density functional theory (DFT) and molecular dynamic (MD) calculations. ωB97X-D3/def2-TZVP and DLPNO-CCSD(T)/def2-TZVPP methods are used for the estimation of adsorption energies. NiC10 complex is observed to be more sensitive toward hydrogen adsorption compared to isolated C10 carbyne. The nH2-NiC10 complexes are stable when n ≤ 5, and adsorption energies are in the range of − 0.89 to − 0.22 eV/H2 molecule while the hydrogen storage capacity is about 1.11 to 5.33 wt% for hydrogen molecule. For desorption of H2, molecular dynamic calculations are performed at ωB97X-D3 with def2-TZVP O using RCA ABMD package in which the complexes showed stability to desorption up to 2000 steps. This study illustrates the potential of nickel-doped carbyne C10 complex for the storage of hydrogen and applications in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Aneke, M. Wang, Energy storage technologies and real life applications—a state of the art review. Appl. Energy 179, 350–377 (2016). https://doi.org/10.1016/j.apenergy.2016.06.097

    Article  Google Scholar 

  2. S.P.S. Badwal, S. Giddey, C. Munnings, Emerging technologies, markets and commercialization of solid-electrolytic hydrogen production. WIREs Energy Environ. (2018). https://doi.org/10.1002/wene.286

    Article  Google Scholar 

  3. Y. Wu, L. Zhang, Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries? Transp. Res. Part D 51, 129–145 (2017). https://doi.org/10.1016/j.trd.2016.12.007

    Article  Google Scholar 

  4. C. Acar, I. Dincer, The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int. J. Hydrogen Energy 45(5), 3396–3406 (2020). https://doi.org/10.1016/j.ijhydene.2018.10.149

    Article  CAS  Google Scholar 

  5. W.C. Nadaleti, G. Przybyla, Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries. Energy 154, 38–51 (2018). https://doi.org/10.1016/j.energy.2018.04.046

    Article  CAS  Google Scholar 

  6. B. Paul, J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: state of the art and technical challenges. Renew. Sustain. Energy Rev. 79, 585–599 (2017). https://doi.org/10.1016/j.rser.2017.05.112

    Article  Google Scholar 

  7. A. Gong, D. Verstraete, Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: current status and research needs. Int. J. Hydrogen Energy 42(33), 21311–21333 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.148

    Article  CAS  Google Scholar 

  8. F. Dawood, M. Anda, G.M. Shafiullah, Hydrogen production for energy: an overview. Int. J. Hydrogen Energy 45(7), 3847–3869 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.059

    Article  CAS  Google Scholar 

  9. S. Singh, S. Jain, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Hydrogen: a sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 51, 623–633 (2015). https://doi.org/10.1016/j.rser.2015.06.040

    Article  CAS  Google Scholar 

  10. J. Fischman, P. Godart, D. Hart, Hydrogen generation via the reaction of an activated aluminum slurry with water. Int. J. Hydrogen Energy 45(35), 17118–17130 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.161

    Article  CAS  Google Scholar 

  11. K. O’Malley, G. Ordaz, J. Adams, K. Randolph, C.C. Ahn, N.T. Stetson, Applied hydrogen storage research and development: a perspective from the U.S. Department of Energy. J. Alloys Compd. 645, S419–S422 (2015). https://doi.org/10.1016/j.jallcom.2014.12.090

    Article  CAS  Google Scholar 

  12. F.J. García de Abajo, Graphene plasmonics: challenges and opportunities. ACS Photon. 1(3), 135–152 (2014). https://doi.org/10.1021/ph400147y

    Article  CAS  Google Scholar 

  13. S. Chen, L. Liu, X. Gao, Y. Hua, L. Peng, Y. Zhang, L. Yang, Y. Tan, F. He, H. Xia, Addition of alkynes and osmium carbynes towards functionalized Dπ–Pπ conjugated systems. Nat. Commun. 11(1), 4651 (2020). https://doi.org/10.1038/s41467-020-18498-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Schwerdtfeger, L.N. Wirz, J. Avery, The topology of fullerenes. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(1), 96–145 (2015). https://doi.org/10.1002/wcms.1207

    Article  CAS  PubMed  Google Scholar 

  15. Y. Hashikawa, T. Fushino, Y. Murata, Double-holed fullerenes. J. Am. Chem. Soc. 142(49), 20572–20576 (2020). https://doi.org/10.1021/jacs.0c10676

    Article  CAS  PubMed  Google Scholar 

  16. V. Mahamiya, A. Shukla, B. Chakraborty, Scandium decorated C24 fullerene as high capacity reversible hydrogen storage material: insights from density functional theory simulations. Appl. Surf. Sci. 573, 151389 (2022). https://doi.org/10.1016/j.apsusc.2021.151389

    Article  CAS  Google Scholar 

  17. V. Mahamiya, A. Shukla, B. Chakraborty, Exploring yttrium doped C24 fullerene as a high-capacity reversible hydrogen storage material: DFT investigations. J. Alloys Compd. 897, 162797 (2022). https://doi.org/10.1016/j.jallcom.2021.162797

    Article  CAS  Google Scholar 

  18. J. Wang, Y. Du, L. Sun, Ca-decorated novel boron sheet: a potential hydrogen storage medium. Int. J. Hydrogen Energy 41(10), 5276–5283 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.039

    Article  CAS  Google Scholar 

  19. R.K. Sahoo, B. Chakraborty, S. Sahu, Reversible hydrogen storage on alkali metal (Li and Na) decorated C20 fullerene: a density functional study. Int. J. Hydrogen Energy 46(80), 40251–40261 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.219

    Article  CAS  Google Scholar 

  20. V. Mahamiya, A. Shukla, N. Garg, B. Chakraborty, High-capacity reversible hydrogen storage in scandium decorated holey graphyne: theoretical perspectives. Int. J. Hydrogen Energy 47(12), 7870–7883 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.112

    Article  CAS  Google Scholar 

  21. V. Mahamiya, A. Shukla, B. Chakraborty, Ultrahigh reversible hydrogen storage in K and Ca decorated 4–6-8 biphenylene sheet. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.01.216

    Article  Google Scholar 

  22. L.A. Desales-Guzmán, J.H. Pacheco-Sánchez, F.J. Isidro-Ortega, K. De la Mora-Zarco, Hydrogen storage in Ca-decorated carbyne C10-ring on either Dnh or D(n/2)h symmetry. DFT study. Int. J. Hydrogen Energy 45(11), 6780–6792 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.151

    Article  CAS  Google Scholar 

  23. L.A. Desales Guzmán, J.H. Pacheco Sánchez, J.S. Arellano Peraza, Carbyne ring activated using ZnCl2 for hydrogen adsorption: DFT study. ACS Omega 7(12), 10100–10114 (2022). https://doi.org/10.1021/acsomega.1c06149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. R. Konda, A. Deshmukh, E. Titus, A. Chaudhari, Alkali, alkaline earth and transition metal doped B6H6 complexes for hydrogen storage. Int. J. Hydrogen Energy 42(37), 23723–23730 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.023

    Article  CAS  Google Scholar 

  25. L.G. Arellano, F. de Santiago, Á. Miranda, F. Salazar, A. Trejo, L.A. Pérez, M. Cruz-Irisson, Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: a first-principles study. Int. J. Hydrogen Energy 46(38), 20266–20279 (2021). https://doi.org/10.1016/j.ijhydene.2020.03.078

    Article  CAS  Google Scholar 

  26. S. Kumar, T.J. Dhilip Kumar, Hydrogen trapping potential of Ca decorated metal-graphyne framework. Energy 199, 117453 (2020). https://doi.org/10.1016/j.energy.2020.117453

    Article  CAS  Google Scholar 

  27. Z.M. Ao, Q. Jiang, R.Q. Zhang, T.T. Tan, S. Li, Al doped graphene: a promising material for hydrogen storage at room temperature. J. Appl. Phys. 105(7), 074307 (2009). https://doi.org/10.1063/1.3103327

    Article  CAS  Google Scholar 

  28. W. Liu, Y.H. Zhao, Y. Li, Q. Jiang, E.J. Lavernia, Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J. Phys. Chem. C 113(5), 2028–2033 (2009). https://doi.org/10.1021/jp8091418

    Article  CAS  Google Scholar 

  29. E. Beheshti, A. Nojeh, P. Servati, A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon N. Y. 49(5), 1561–1567 (2011). https://doi.org/10.1016/j.carbon.2010.12.023

    Article  CAS  Google Scholar 

  30. K.R.S. Chandrakumar, S.K. Ghosh, Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab initio study. Nano Lett. 8(1), 13–19 (2008). https://doi.org/10.1021/nl071456i

    Article  CAS  PubMed  Google Scholar 

  31. V. Kalamse, N. Wadnerkar, A. Deshmukh, A. Chaudhari, Interaction of molecular hydrogen with Ni doped ethylene and acetylene complex. Int. J. Hydrogen Energy 37(6), 5114–5121 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.100

    Article  CAS  Google Scholar 

  32. L. Kavan, J. Kastner, Carbyne forms of carbon: continuation of the story. Carbon N. Y. 32(8), 1533–1536 (1994). https://doi.org/10.1016/0008-6223(94)90149-X

    Article  CAS  Google Scholar 

  33. W.A. Chalifoux, M.J. Ferguson, R. McDonald, F. Melin, L. Echegoyen, R.R. Tykwinski, Adamantyl-endcapped polyynes. J. Phys. Org. Chem. 25(1), 69–76 (2012). https://doi.org/10.1002/poc.1874

    Article  CAS  Google Scholar 

  34. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N., Staroverov, V. N., Normand, R. K. J., Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Rega, M. C. N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Gomperts, J. J. R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö .; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. D. J. F. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.

  35. R. I. Dennington, T. Keith, J. Millam, GaussView Version 5.0.8, Semichem. Inc., Shawnee Mission, KS, 2008

  36. N. Kosar, T. Mahmood, K. Ayub, Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: a benchmark study. J. Mol. Struct. 1150, 447–458 (2017). https://doi.org/10.1016/j.molstruc.2017.08.104

    Article  CAS  Google Scholar 

  37. N. Kosar, K. Ayub, T. Mahmood, Accurate theoretical method for homolytic cleavage of C Sn bond: a benchmark approach. Comput. Theor. Chem. 1140, 134–144 (2018). https://doi.org/10.1016/j.comptc.2018.08.003

    Article  CAS  Google Scholar 

  38. F. Neese, F. Wennmohs, U. Becker, C. Riplinger, The ORCA quantum chemistry program package. J. Chem. Phys. 152(22), 224108 (2020). https://doi.org/10.1063/5.0004608

    Article  CAS  PubMed  Google Scholar 

  39. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  40. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  41. F. Neese, Software update: the ORCA program system, Version 4.0. WIREs Comput. Mol. Sci. (2018). https://doi.org/10.1002/wcms.1327

    Article  Google Scholar 

  42. T. Torelli, L. Mitas, Electron correlation in C4N+2 carbon rings: aromatic versus dimerized structures. Phys. Rev. Lett. 85(8), 1702–1705 (2000). https://doi.org/10.1103/PhysRevLett.85.1702

    Article  CAS  PubMed  Google Scholar 

  43. F. Ullah, K. Ayub, M.A. Gilani, M. Imran, T. Mahmood, C10F as a potential anode material for alkali-ion batteries; a quantum chemical approach. Comput. Theor. Chem. 1206, 113470 (2021). https://doi.org/10.1016/j.comptc.2021.113470

    Article  CAS  Google Scholar 

  44. F. Khaliq, K. Ayub, T. Mahmood, S. Muhammad, S. Tabassum, M.A. Gilani, First example of lanthanum as dopant on Al12N12 and Al12P12 nanocages for improved electronic and nonlinear optical properties with high stability. Mater. Sci. Semicond. Process. 135, 106122 (2021). https://doi.org/10.1016/j.mssp.2021.106122

    Article  CAS  Google Scholar 

  45. P. Khan, T. Mahmood, K. Ayub, S. Tabassum, M. Amjad Gilani, Turning diamondoids into nonlinear optical materials by alkali metal substitution: a DFT investigation. Opt. Laser Technol. 142, 107231 (2021). https://doi.org/10.1016/j.optlastec.2021.107231

    Article  CAS  Google Scholar 

  46. J. Beheshtian, I. Ravaei, Hydrogen storage by BeO nano-cage: a DFT study. Appl. Surf. Sci. 368, 76–81 (2016). https://doi.org/10.1016/j.apsusc.2016.01.239

    Article  CAS  Google Scholar 

  47. A. Catellani, M. Posternak, A. Baldereschi, A.J. Freeman, Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 36(11), 6105–6111 (1987). https://doi.org/10.1103/PhysRevB.36.6105

    Article  CAS  Google Scholar 

  48. A. Kumar, N. Vyas, A.K. Ojha, Hydrogen storage in magnesium decorated boron clusters (Mg2Bn, n = 4–14): a density functional theory study. Int. J. Hydrogen Energy 45(23), 12961–12971 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.018

    Article  CAS  Google Scholar 

  49. A.S. Rad, K. Ayub, Ni adsorption on Al12P12 nano-cage: a DFT study. J. Alloys Compd. 678, 317–324 (2016). https://doi.org/10.1016/j.jallcom.2016.03.175

    Article  CAS  Google Scholar 

  50. A.S. Rad, S.M. Aghaei, V. Poralijan, M. Peyravi, M. Mirzaei, Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput. Theor. Chem. 1109, 1–9 (2017). https://doi.org/10.1016/j.comptc.2017.03.030

    Article  CAS  Google Scholar 

  51. A.S. Rad, K. Ayub, Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int. J. Hydrogen Energy 41(47), 22182–22191 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.158

    Article  CAS  Google Scholar 

  52. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984). https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  53. C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M.S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature. Science (80-) 286(5442), 1127–1129 (1999). https://doi.org/10.1126/science.286.5442.1127

    Article  CAS  Google Scholar 

  54. A. Arami-Niya, W.M.A.W. Daud, F.S. Mjalli, Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. J. Anal. Appl. Pyrol. 89(2), 197–203 (2010). https://doi.org/10.1016/j.jaap.2010.08.006

    Article  CAS  Google Scholar 

  55. J.M. Blackman, J.W. Patrick, A. Arenillas, W. Shi, C.E. Snape, Activation of carbon nanofibres for hydrogen storage. Carbon N. Y. 44(8), 1376–1385 (2006). https://doi.org/10.1016/j.carbon.2005.11.015

    Article  CAS  Google Scholar 

  56. M. Jordá-Beneyto, F. Suárez-García, D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures. Carbon N. Y. 45(2), 293–303 (2007). https://doi.org/10.1016/j.carbon.2006.09.022

    Article  CAS  Google Scholar 

  57. G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Carbide-derived carbons: effect of pore size on hydrogen uptake and heat of adsorption. Adv. Funct. Mater. 16(17), 2288–2293 (2006). https://doi.org/10.1002/adfm.200500830

    Article  CAS  Google Scholar 

  58. C. Zhang, Z. Geng, M. Cai, J. Zhang, X. Liu, H. Xin, J. Ma, Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int. J. Hydrogen Energy 38(22), 9243–9250 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.163

    Article  CAS  Google Scholar 

  59. G. Sethia, A. Sayari, Activated carbon with optimum pore size distribution for hydrogen storage. Carbon N. Y. 99, 289–294 (2016). https://doi.org/10.1016/j.carbon.2015.12.032

    Article  CAS  Google Scholar 

  60. M.M. de Castro, M. Martinez-Escandell, M. Molina-Sabio, F. Rodriguez-Reinoso, Hydrogen adsorption on KOH activated carbons from mesophase pitch containing Si, B, Ti or Fe. Carbon N. Y. 48(3), 636–644 (2010). https://doi.org/10.1016/j.carbon.2009.10.005

    Article  CAS  Google Scholar 

  61. K. Babeł, K. Jurewicz, KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon N. Y. 46(14), 1948–1956 (2008). https://doi.org/10.1016/j.carbon.2008.08.005

    Article  CAS  Google Scholar 

  62. D.P. Vargas, L. Giraldo, A. Erto, J.C. Moreno-Piraján, Chemical modification of activated carbon monoliths for CO2 adsorption. J. Therm. Anal. Calorim. 114(3), 1039–1047 (2013). https://doi.org/10.1007/s10973-013-3086-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Higher Education Commission of Pakistan and COMSATS University Islamabad, Abbottabad Campus for their financial and technical support.

Funding

The authors have disclosed all funding sources.

Author information

Authors and Affiliations

Authors

Contributions

MB and NK Acquisition and analysis of data; manuscript drafting, Software handling, data handling MAG and FU Software; Study conception and design; funding acquisition MSA Critical revision Resources; TM and KA Supervision; Study conception and design; Critical revision; Resources.

Corresponding authors

Correspondence to Khurshid Ayub or Tariq Mahmood.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1974 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosar, N., Bibi, M., Ullah, F. et al. Reversible H2 Storage Capacity of Ni Functionalized Carbyne (C10) Complex. J Inorg Organomet Polym 33, 515–528 (2023). https://doi.org/10.1007/s10904-022-02516-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02516-5

Keywords

Navigation