Skip to main content
Log in

Spin Down of Superfluid-Filled Vessels: Theory Versus Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The spin up of helium II is studied by calculating the spin-down recovery of a superfluid-filled container after an impulsive acceleration and comparing with experiments. The calculation takes advantage of a recently published analytic solution for the spin up of a Hall-Vinen-Bekharevich-Khalatnikov superfluid that treats the back-reaction torque exerted by the viscous component self-consistently in arbitrary geometry for the first time. Excellent agreement at the 0.5% level is obtained for experiments at T=1.57 K, after correcting for the non-uniform rotation in the initial state, confirming that vortex tension and pinning (which are omitted from the theory) play a minimal role under certain conditions (small Rossby number, smooth walls). The dependence of the spin-down time on temperature and the mass fraction of the viscous component are also investigated. Closer to the lambda point, the predicted onset of turbulence invalidates the linear Ekman theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Adams, M. Cieplak, W.I. Glaberson, Spin-up problem in superfluid 4He. Phys. Rev. B, Condens. Matter 32, 171–177 (1985). doi:10.1103/PhysRevB.32.171

    Article  ADS  Google Scholar 

  2. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, Friction on quantized vortices in helium II. A review. J. Low Temp. Phys. 52, 189–247 (1983). doi:10.1007/BF00682247

    Article  ADS  Google Scholar 

  3. H. Bondi, R.A. Lyttleton, On the dynamical theory of the rotation of the earth, Proc. Camb. Philos. Soc. 44, 345 (1948). doi:10.1017/S0305004100024361

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. L.J. Campbell, Y.K. Krasnov, Transient behavior of rotating superfluid helium. J. Low Temp. Phys. 49, 377–396 (1982). doi:10.1007/BF00681599

    Article  ADS  Google Scholar 

  5. E. Chandler, G. Baym, The hydrodynamics of rotating superfluids. II. Finite temperature, dissipative theory. J. Low Temp. Phys. 62, 119–142 (1986). doi:10.1007/BF00681323

    Article  ADS  Google Scholar 

  6. S.S. Courts, J.T. Tough, Transition to superfluid turbulence in two-fluid flow of He II. Phys. Rev. B, Condens. Matter 38, 74–80 (1988). doi:10.1103/PhysRevB.38.74

    Article  ADS  Google Scholar 

  7. W.I. Glaberson, W.W. Johnson, R.M. Ostermeier, Instability of a vortex array in He II. Phys. Rev. Lett. 33, 1197–1200 (1974). doi:10.1103/PhysRevLett.33.1197

    Article  ADS  Google Scholar 

  8. J.M. Goodwin, A vibrating wire viscometer for measurements at elevated pressures. J. Phys. E, Sci. Instrum. 6, 452–456 (1973). doi:10.1088/0022-3735/6/5/014

    Article  ADS  Google Scholar 

  9. H.P. Greenspan (ed.), The Theory of Rotating Fluid (Cambridge University Press, Cambridge, 1968)

    Google Scholar 

  10. H.P. Greenspan, L.N. Howard, On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385–404 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. H.E. Hall, The angular acceleration of liquid helium II. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 250, 359–385 (1957). doi:10.1098/rsta.1957.0024

    Article  ADS  Google Scholar 

  12. H.E. Hall, The rotation of liquid helium II. Adv. Phys. 9, 89–146 (1960). doi:10.1080/00018736000101169

    Article  ADS  Google Scholar 

  13. H.E. Hall, W.F. Vinen, The rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium II. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 238, 215–234 (1956)

    Article  ADS  MATH  Google Scholar 

  14. J. Maynard, Determination of the thermodynamics of He II from sound-velocity data. Phys. Rev. B, Condens. Matter 14, 3868–3891 (1976). doi:10.1103/PhysRevB.14.3868

    Article  ADS  Google Scholar 

  15. J.R. Pellam, Evidence of the nature of rotating liquid helium. Phys. Rev. Lett. 5, 189–191 (1960). doi:10.1103/PhysRevLett.5.189

    Article  ADS  Google Scholar 

  16. Z. Peradzynski, S. Filipkowski, W. Fiszdon, Spin-up of He II in a cylindrical vessel of finite height. Eur. J. Mech. B, Fluids 9, 259–272 (1990)

    MATH  Google Scholar 

  17. C. Peralta, A. Melatos, M. Giacobello, A. Ooi, Superfluid spherical Couette flow. J. Fluid Mech. 609, 221–274 (2008). doi:10.1017/S002211200800236X

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. W.H. Press, S. Saul Teukolsky, W. Vetterling, B. Flannery: Numerical Recipes in C++: The Art of Scientific Computing. Press, W. H. (2002)

  19. A. Reisenegger, The spin-up problem in helium II. J. Low Temp. Phys. 92, 77–106 (1993). doi:10.1007/BF00681873

    Article  ADS  Google Scholar 

  20. J.D. Reppy, D. Depatie, C.T. Lane, Helium II in rotation. Phys. Rev. Lett. 5, 541–542 (1960). doi:10.1103/PhysRevLett.5.541

    Article  ADS  Google Scholar 

  21. G.A. Sheshin, A.A. Zadorozhko, É.Y. Rudavskiĭ, V.K. Chagovets, L. Skrbek, M. Blazhkova, Characteristics of the transition to turbulence in superfluid 4He at low temperatures. Low Temp. Phys. 34, 875–883 (2008). doi:10.1063/1.3009577

    Article  ADS  Google Scholar 

  22. J.T. Tough, W.D. McCormick, J.G. Dash, Viscosity of liquid he II. Phys. Rev. 132, 2373–2378 (1963). doi:10.1103/PhysRev.132.2373

    Article  ADS  Google Scholar 

  23. J.S. Tsakadze, S.J. Tsakadze, Relaxation phenomena at acceleration of rotation of a spherical vessel with helium II and relaxation in pulsars. Phys. Lett. A 41, 197–199 (1972). doi:10.1016/0375-9601(72)90257-5

    Article  ADS  Google Scholar 

  24. J.S. Tsakadze, S.J. Tsakadze, Measurement of the relaxation time on acceleration of vessels with helium II and superfluidity in pulsars. Sov. Phys. JETP 37, 918 (1973)

    ADS  Google Scholar 

  25. J.S. Tsakadze, S.J. Tsakadze, Properties of slowly rotating helium II and the superfluidity of pulsars. J. Low Temp. Phys. 39, 649–688 (1980). doi:10.1007/BF00114899

    Article  ADS  Google Scholar 

  26. M. Tsubota, C.F. Barenghi, T. Araki, A. Mitani, Instability of vortex array and transitions to turbulence in rotating helium II. Phys. Rev. B, Condens. Matter 69(13), 134515 (2004). doi:10.1103/PhysRevB.69.134515

    Article  ADS  Google Scholar 

  27. C.A. van Eysden, A. Melatos, Pulsar glitch recovery and the superfluidity coefficients of bulk nuclear matter. Mon. Not. R. Astron. Soc. 409, 1253–1268 (2010)

    Article  ADS  Google Scholar 

  28. C.A. van Eysden, A. Melatos, Spin up of a two-component superfluid. Analytic theory in arbitrary geometry. J. Fluid Mech. (2011, submitted)

  29. C.A. van Eysden, A. Melatos, Spin up of a two-component superfluid. Self-consistent container feedback. (2011, in preparation)

  30. R.H. Walmsley, C.T. Lane, Angular momentum of liquid helium. Phys. Rev. 112, 1041–1047 (1958). doi:10.1103/PhysRev.112.1041

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. van Eysden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eysden, C.A., Melatos, A. Spin Down of Superfluid-Filled Vessels: Theory Versus Experiment. J Low Temp Phys 165, 1 (2011). https://doi.org/10.1007/s10909-011-0385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-011-0385-6

Keywords

Navigation