Skip to main content
Log in

Interpreting Superfluid Spin Up Through the Response of the Container

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A recipe is presented for interpreting non-invasively the transport processes at work during relaxation of a cylindrical, superfluid-filled vessel, after it is accelerated impulsively and then allowed to respond to the viscous torque exerted by the contained fluid. The recipe exploits a recently published analytic solution for Ekman pumping in a two-component superfluid, which treats the back-reaction self-consistently in arbitrary geometry for the first time. The applicability of the recipe to He II, 3He, 3He–4He mixtures and Bose-Einstein condensates is assessed, and the effects of turbulence discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Adams et al. [17] explained the spin up from rest in rough-walled containers below 1.3 K by modelling pinning as friction between the vortices and the walls.

  2. The tension parameter ν s looks like a kinematic viscosity, but it is non-dissipative and gives rise to Kelvin waves. It takes the form \(\nu_{s}=\left(\Gamma/4\pi\right) \ln(b_{0}/a_{0})\), where b 0=(Γ/2Ω s )1/2 is the inter-vortex spacing.

References

  1. E.L. Andronikashvili, Y.G. Mamaladze, Rev. Mod. Phys. 38, 567 (1966). doi:10.1103/RevModPhys.38.567

    Article  ADS  Google Scholar 

  2. H.W. Liepmann, G.A. Laguna, Annu. Rev. Fluid Mech. 16, 139 (1984). doi:10.1146/annurev.fl.16.010184.001035

    Article  ADS  Google Scholar 

  3. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  4. A.A. Zadorozhko, É.Y. Rudavskiĭ, V.K. Chagovets, G.A. Sheshin, Y.A. Kitsenko, J. Low Temp. Phys. 35, 100 (2009). doi:10.1063/1.3075937

    Article  Google Scholar 

  5. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975). doi:10.1103/RevModPhys.47.331

    Article  ADS  Google Scholar 

  6. A.F. Andreev, E.P. Bashkin, Sov. Phys. JETP 69, 319 (1975)

    Google Scholar 

  7. S.R. Stalp, J.J. Niemela, R.J. Donnelly, Physica B, Condens. Matter 284, 75 (2000). doi:10.1016/S0921-4526(99)02041-4

    Article  ADS  Google Scholar 

  8. T.V. Chagovets, A.V. Gordeev, L. Skrbek, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 76(2), 027301 (2007). doi:10.1103/PhysRevE.76.027301

    Article  ADS  Google Scholar 

  9. P.M. Walmsley, A.I. Golov, H.E. Hall, A.A. Levchenko, W.F. Vinen, Phys. Rev. Lett. 99(26), 265302 (2007). doi:10.1103/PhysRevLett.99.265302

    Article  ADS  Google Scholar 

  10. R.H. Walmsley, C.T. Lane, Phys. Rev. 112, 1041 (1958). doi:10.1103/PhysRev.112.1041

    Article  ADS  Google Scholar 

  11. H.E. Hall, Adv. Phys. 9, 89 (1960). doi:10.1080/00018736000101169

    Article  ADS  Google Scholar 

  12. J.R. Pellam, Phys. Rev. Lett. 5, 189 (1960). doi:10.1103/PhysRevLett.5.189

    Article  ADS  Google Scholar 

  13. J.D. Reppy, D. Depatie, C.T. Lane, Phys. Rev. Lett. 5, 541 (1960). doi:10.1103/PhysRevLett.5.541

    Article  ADS  Google Scholar 

  14. L.J. Campbell, Y.K. Krasnov, J. Low Temp. Phys. 49, 377 (1982). doi:10.1007/BF00681599

    Article  ADS  Google Scholar 

  15. J.S. Tsakadze, S.J. Tsakadze, J. Low Temp. Phys. 39, 649 (1980). doi:10.1007/BF00114899

    Article  ADS  Google Scholar 

  16. C.A. van Eysden, A. Melatos, J. Low Temp. Phys. (2011 accepted)

  17. P.W. Adams, M. Cieplak, W.I. Glaberson, Phys. Rev. B, Condens. Matter Mater. Phys. 32, 171 (1985). doi:10.1103/PhysRevB.32.171

    Article  ADS  Google Scholar 

  18. C.F. Barenghi, C.J. Swanson, R.J. Donnelly, J. Low Temp. Phys. 100, 385 (1995). doi:10.1007/BF00751517

    Article  ADS  Google Scholar 

  19. R.J. Donnelly, Phys. Rev. B, Condens. Matter 329, 1 (2003). doi:10.1016/S0921-4526(02)02030-6

    Article  ADS  Google Scholar 

  20. M. Tsubota, J. Phys., Condens. Matter 21(16), 164207 (2009). doi:10.1088/0953-8984/21/16/164207

    Article  ADS  Google Scholar 

  21. W.F. Vinen, J. Low Temp. Phys. 161, 419 (2010). doi:10.1007/s10909-010-0229-9

    Article  ADS  Google Scholar 

  22. V.B. Eltsov, A.I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V.S. L’Vov, R.E. Solntsev, Phys. Rev. Lett. 99(26), 265301 (2007). doi:10.1103/PhysRevLett.99.265301

    Article  ADS  Google Scholar 

  23. S.N. Fisher, G.R. Pickett, Progress in Low Temperature Physics, vol. XVI (Elsevier, Amsterdam, 2009)

    Google Scholar 

  24. C.A.M. Castelijns, J.G.M. Kuerten, A.T.A.M. de Waele, H.M. Gijsman, Phys. Rev. B, Condens. Matter Mater. Phys. 32, 2870 (1985). doi:10.1103/PhysRevB.32.2870

    Article  ADS  Google Scholar 

  25. I.A. Gritsenko, A.A. Zadorozhko, E.Y. Rudavskii, V.K. Chagovets, G.A. Sheshin, J. Low Temp. Phys. 158, 450 (2010). doi:10.1007/s10909-009-9950-7

    Article  ADS  Google Scholar 

  26. H.P. Greenspan, L.N. Howard, J. Fluid Mech. 17, 385 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hänninen, M. Krusius, V.S. L’Vov, Phys. Rev. Lett. 105(12), 125301 (2010). doi:10.1103/PhysRevLett.105.125301

    Article  ADS  Google Scholar 

  28. P.M. Walmsley, V.B. Eltsov, P.J. Heikkinen, J.J. Hosio, R. Hanninen, M. Krusius, arXiv e-prints (2011)

  29. M.A. Alpar, S.A. Langer, J.A. Sauls, Astrophys. J. 282, 533 (1984). doi:10.1086/162232

    Article  ADS  Google Scholar 

  30. C.A. van Eysden, A. Melatos, Mon. Not. R. Astron. Soc. 409, 1253 (2010)

    Article  ADS  Google Scholar 

  31. C.A. van Eysden, A. Melatos, J. Fluid Mech. (2011 submitted)

  32. C.A. van Eysden, A. Melatos, (2011 in preparation)

  33. C. Peralta, A. Melatos, M. Giacobello, A. Ooi, J. Fluid Mech. 609, 221 (2008). doi:10.1017/S002211200800236X

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 238, 215 (1956)

    Article  MATH  ADS  Google Scholar 

  35. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, Elmsford, 1959)

    Google Scholar 

  36. W.F. Vinen, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 260, 218 (1961). doi:10.1098/rspa.1961.0029

    Article  ADS  Google Scholar 

  37. R.N. Hills, P.H. Roberts, Arch. Ration. Mech. Anal. 66, 43 (1977). doi:10.1007/BF00250851

    Article  MATH  MathSciNet  Google Scholar 

  38. G. Baym, E. Chandler, J. Low Temp. Phys. 50, 57 (1983). doi:10.1007/BF00681839

    Article  ADS  Google Scholar 

  39. A. Reisenegger, J. Low Temp. Phys. 92, 77 (1993). doi:10.1007/BF00681873

    Article  ADS  Google Scholar 

  40. V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hänninen, M. Krusius, J. Low Temp. Phys. 161, 474 (2010). doi:10.1007/s10909-010-0243-y

    Article  ADS  Google Scholar 

  41. H.P. Greenspan, The Theory of Rotating Fluids (Cambridge University Press, Cambridge, 1968)

    MATH  Google Scholar 

  42. A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, G.E. Volovik, Nature 424, 1022 (2003). doi:10.1038/nature01880

    Article  ADS  Google Scholar 

  43. W.I. Glaberson, W.W. Johnson, R.M. Ostermeier, Phys. Rev. Lett. 33, 1197 (1974). doi:10.1103/PhysRevLett.33.1197

    Article  ADS  Google Scholar 

  44. M. Tsubota, C.F. Barenghi, T. Araki, A. Mitani, Phys. Rev. B, Condens. Matter Mater. Phys. 69(13), 134515 (2004). doi:10.1103/PhysRevB.69.134515

    Article  ADS  Google Scholar 

  45. M.S. Paoletti, D.P. Lathrop, Ann. Rev. Condens. Matter Phys. 2, 213 (2011). doi:10.1146/annurev-conmatphys-062910-140533

    Article  ADS  Google Scholar 

  46. C.J. Gorter, J.H. Mellink, Physica 15, 285 (1949). doi:10.1016/0031-8914(49)90105-6

    Article  ADS  Google Scholar 

  47. J.J. Hosio, V.B. Eltsov, R. de Graaf, P.J. Heikkinen, R. Hänninen, M. Krusius, V.S. L’Vov, G.E. Volovik, Phys. Rev. Lett. 107(13), 135302 (2011). doi:10.1103/PhysRevLett.107.135302

    Article  ADS  Google Scholar 

  48. J.G. Dash, R.D. Taylor, Phys. Rev. 105, 7 (1957). doi:10.1103/PhysRev.105.7

    Article  MATH  ADS  Google Scholar 

  49. R.J. Donnelly, http://darkwing.uoregon.edu/~rjd/vapor1.htm. Internet resource

  50. A.D.B. Woods, A.C. Hollis Hallett, Can. J. Phys. 41, 596 (1963)

    Article  ADS  Google Scholar 

  51. R.J. Donnelly, M.M. Lamar, J. Fluid Mech. 186, 163 (1988). doi:10.1017/S0022112088000096

    Article  ADS  Google Scholar 

  52. J.T. Tough, W.D. McCormick, J.G. Dash, Phys. Rev. 132, 2373 (1963). doi:10.1103/PhysRev.132.2373

    Article  ADS  Google Scholar 

  53. J.M. Goodwin, J. Phys. E, Sci. Instrum. 6, 452 (1973). doi:10.1088/0022-3735/6/5/014

    Article  ADS  Google Scholar 

  54. R.W. Webeler, G. Allen, Phys. Rev. A 5, 1820 (1972). doi:10.1103/PhysRevA.5.1820

    Article  ADS  Google Scholar 

  55. S. Wang, C. Howald, H. Meyer, J. Low Temp. Phys. 79, 151 (1990). doi:10.1007/BF00692451

    Article  ADS  Google Scholar 

  56. H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 238, 204 (1956)

    Article  ADS  Google Scholar 

  57. P.J. Bendt, Phys. Rev. 153, 280 (1967). doi:10.1103/PhysRev.153.280

    Article  ADS  Google Scholar 

  58. P. Lucas, J. Phys. C, Solid State Phys. 3, 1180 (1970). doi:10.1088/0022-3719/3/5/030

    Article  ADS  Google Scholar 

  59. P. Mathieu, A. Serra, Y. Simon, Phys. Rev. B, Condens. Matter Mater. Phys. 14, 3753 (1976). doi:10.1103/PhysRevB.14.3753

    Article  ADS  Google Scholar 

  60. R.J. Miller, I.H. Lynall, J.B. Mehl, Phys. Rev. B, Condens. Matter Mater. Phys. 17, 1035 (1978). doi:10.1103/PhysRevB.17.1035

    Article  ADS  Google Scholar 

  61. H.A. Snyder, D.M. Linekin, Phys. Rev. 147, 131 (1966). doi:10.1103/PhysRev.147.131

    Article  ADS  Google Scholar 

  62. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52, 189 (1983). doi:10.1007/BF00682247

    Article  ADS  Google Scholar 

  63. G.A. Sheshin, A.A. Zadorozhko, É.Y. Rudavskiĭ, V.K. Chagovets, L. Skrbek, M. Blazhkova, J. Low Temp. Phys. 34, 875 (2008). doi:10.1063/1.3009577

    Article  Google Scholar 

  64. T.A. Alvesalo, H.K. Collan, M.T. Loponen, O.V. Lounasmaa, M.C. Veuro, J. Low Temp. Phys. 19, 1 (1975). doi:10.1007/BF00115527

    Article  ADS  Google Scholar 

  65. D.C. Carless, H.E. Hall, J.R. Hook, J. Low Temp. Phys. 50, 583 (1983). doi:10.1007/BF00683497

    Article  ADS  Google Scholar 

  66. P.C. Main, C.W. Kiewiet, W.T. Band, J.R. Hook, D.J. Sandiford, H.E. Hall, J. Phys. C, Solid State Phys. 9, L397 (1976). doi:10.1088/0022-3719/9/15/005

    Article  ADS  Google Scholar 

  67. G. Eska, K. Neumaier, W. Schoepe, K. Uhlig, W. Wiedemann, P. Wölfle, Phys. Rev. Lett. 44, 1337 (1980). doi:10.1103/PhysRevLett.44.1337

    Article  ADS  Google Scholar 

  68. J.R. Hook, J. Low Temp. Phys. 74, 19 (1989). doi:10.1007/BF00681751

    Article  ADS  Google Scholar 

  69. T. Hata, S.A.J. Wiegers, R. Jochemsen, G. Frossati, Phys. Rev. Lett. 63, 2745 (1989). doi:10.1103/PhysRevLett.63.2745

    Article  ADS  Google Scholar 

  70. H. Akimoto, T. Okuda, H. Ishimoto, J. Low Temp. Phys. 101, 721 (1995). doi:10.1007/BF00753380

    Article  ADS  Google Scholar 

  71. M. Nakagawa, A. Matsubara, O. Ishikawa, T. Hata, T. Kodama, Phys. Rev. B, Condens. Matter Mater. Phys. 54, 6849 (1996). doi:10.1103/PhysRevB.54.R6849

    Article  ADS  Google Scholar 

  72. L.P. Roobol, P. Remeijer, S.C. Steel, R. Jochemsen, V.S. Shumeiko, G. Frossati, Phys. Rev. Lett. 79, 685 (1997). doi:10.1103/PhysRevLett.79.685

    Article  ADS  Google Scholar 

  73. T.D.C. Bevan, A.J. Manninen, J.B. Cook, H. Alles, J.R. Hook, H.E. Hall, J. Low Temp. Phys. 109, 423 (1997). doi:10.1007/s10909-005-0095-z

    ADS  Google Scholar 

  74. A.P. Finne, V.B. Eltsov, R. Blaauwgeers, Z. Janu, M. Krusius, L. Skrbek, J. Low Temp. Phys. 134, 375 (2004). doi:10.1023/B:JOLT.0000012582.88635.7b

    Article  ADS  Google Scholar 

  75. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor & Francis, London, 2005)

    Google Scholar 

  76. J.R. Hook, T.D.C. Bevan, A.J. Manninen, J.B. Cook, A.J. Armstrong, H.E. Hall, Phys. Rev. B, Condens. Matter 210, 251 (1995). doi:10.1016/0921-4526(94)01112-E

    Article  ADS  Google Scholar 

  77. R. Blaauwgeers, M. Blazkova, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007). doi:10.1007/s10909-006-9279-4

    Article  ADS  Google Scholar 

  78. M. Blažková, M. Človečko, V.B. Eltsov, E. Gažo, R. Graaf, J.J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, W.F. Vinen, J. Low Temp. Phys. 150, 525 (2007). doi:10.1007/s10909-007-9587-3

    Article  ADS  Google Scholar 

  79. N. Andersson, G.L. Comer, Class. Quantum Gravity 23, 5505 (2006). doi:10.1088/0264-9381/23/18/003

    Article  MATH  ADS  MathSciNet  Google Scholar 

  80. R. Prix, Phys. Rev. D, Part. Fields 69(4), 043001 (2004). doi:10.1103/PhysRevD.69.043001

    Article  ADS  Google Scholar 

  81. F.K. Miller, J.G. Brisson, Cryogenics 41, 311 (2001)

    Article  ADS  Google Scholar 

  82. G. Chaudhry, J.G. Brisson, J. Low Temp. Phys. 158, 806 (2010). doi:10.1007/s10909-009-0059-9

    Article  ADS  Google Scholar 

  83. X. Qin, C. Howald, H. Meyer, J. Low Temp. Phys. 87, 731 (1992). doi:10.1007/BF00118332

    Article  ADS  Google Scholar 

  84. F.A. Staas, K.W. Taconis, K. Fokkens, Physica 26, 669 (1960). doi:10.1016/0031-8914(60)90057-4

    Article  ADS  Google Scholar 

  85. K.A. Kuenhold, D.B. Crum, R.E. Sarwinski, Phys. Lett. A 41, 13 (1972). doi:10.1016/0375-9601(72)90611-1

    Article  ADS  Google Scholar 

  86. R.W.H. Webeler, G. Allen, Phys. Lett. A 29, 93 (1969). doi:10.1016/0375-9601(69)91053-6

    Article  ADS  Google Scholar 

  87. B. Jackson, C.F. Barenghi, Phys. Rev. A 74(4), 043618 (2006). doi:10.1103/PhysRevA.74.043618

    Article  ADS  Google Scholar 

  88. M.P. Mink, C.M. Smith, R.A. Duine, Phys. Rev. A 79(1), 013605 (2009). doi:10.1103/PhysRevA.79.013605

    Article  ADS  Google Scholar 

  89. U.R. Fischer, G. Baym, Phys. Rev. Lett. 90(14), 140402 (2003). doi:10.1103/PhysRevLett.90.140402

    Article  ADS  Google Scholar 

  90. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001). doi:10.1126/science.1060182

    Article  ADS  Google Scholar 

  91. I. Coddington, P. Engels, V. Schweikhard, E. Cornell, in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts (2003), p. J1002+

    Google Scholar 

  92. V. Schweikhard, I. Coddington, P. Engels, V.P. Mogendorff, E.A. Cornell, Phys. Rev. Lett. 92(4), 040404 (2004). doi:10.1103/PhysRevLett.92.040404

    Article  ADS  Google Scholar 

  93. A.L. Fetter, Journal of. J. Low Temp. Phys. 161, 445 (2010). doi:10.1007/s10909-010-0202-7

    Article  ADS  Google Scholar 

  94. M.G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, Rev. Mod. Phys. 80, 1455 (2008). doi:10.1103/RevModPhys.80.1455

    Article  ADS  Google Scholar 

  95. S.S. Adler, S. Afanasiev, C. Aidala, N.N. Ajitanand, Y. Akiba, J. Alexander, R. Amirikas, L. Aphecetche, S.H. Aronson et al., Phys. Rev. Lett. 91(18), 182301 (2003). doi:10.1103/PhysRevLett.91.182301

    Article  ADS  Google Scholar 

  96. A. Adare, S. Afanasiev, C. Aidala, N.N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, A. Al-Jamel, K. Aoki et al., Phys. Rev. Lett. 98(17), 172301 (2007). doi:10.1103/PhysRevLett.98.172301

    Article  ADS  Google Scholar 

  97. N. Andersson, G.L. Comer, K. Glampedakis, Nucl. Phys. A 763, 212 (2005). doi:10.1016/j.nuclphysa.2005.08.012

    Article  ADS  Google Scholar 

  98. J. Madsen, Phys. Rev. Lett. 85, 10 (2000). doi:10.1103/PhysRevLett.85.10

    Article  ADS  Google Scholar 

  99. N.K. Glendenning, Phys. Rep. 342, 393 (2001). doi:10.1016/S0370-1573(00)00080-6

    Article  ADS  Google Scholar 

  100. M. Mannarelli, C. Manuel, B.A. Sa’D, Phys. Rev. Lett. 101(24), 241101 (2008). doi:10.1103/PhysRevLett.101.241101

    Article  ADS  Google Scholar 

  101. M.G. Alford, Nucl. Phys. A 830, 385 (2009). doi:10.1016/j.nuclphysa.2009.09.034

    Article  ADS  Google Scholar 

  102. G. Baym, H.A. Bethe, C.J. Pethick, Nucl. Phys. A 175, 225 (1971). doi:10.1016/0375-9474(71)90281-8

    Article  ADS  Google Scholar 

  103. D. Pines, M.A. Alpar, Nature 316, 27 (1985). doi:10.1038/316027a0

    Article  ADS  Google Scholar 

  104. G. Mendell, Astrophys. J. 380, 515 (1991). doi:10.1086/170609

    Article  ADS  MathSciNet  Google Scholar 

  105. N. Andersson, G.L. Comer, Mon. Not. R. Astron. Soc. 328, 1129 (2001). doi:10.1046/j.1365-8711.2001.04923.x

    Article  ADS  Google Scholar 

  106. E. Flowers, N. Itoh, Astrophys. J. 230, 847 (1979). doi:10.1086/157145

    Article  ADS  Google Scholar 

  107. C. Cutler, L. Lindblom, Astrophys. J. 314, 234 (1987). doi:10.1086/165052

    Article  ADS  Google Scholar 

  108. P.M. McCulloch, A.R. Klekociuk, P.A. Hamilton, G.W.R. Royle, Aust. J. Phys. 40, 725 (1987)

    ADS  Google Scholar 

  109. J.S. Tsakadze, S.J. Tsakadze, Phys. Lett. A 41, 197 (1972). doi:10.1016/0375-9601(72)90257-5

    Article  ADS  Google Scholar 

  110. J.S. Tsakadze, S.J. Tsakadze, Sov. Phys. JETP 37, 918 (1973)

    ADS  Google Scholar 

Download references

Acknowledgements

CAVE acknowledges the financial support of an Australian Postgraduate Award and the Albert Shimmins write-up award. CAVE also thanks the anonymous referees for their constructive suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. van Eysden.

Appendix

Appendix

For a container of arbitrary axisymmetric shape, the fluid is contained within the volume −h(r)<z<h(r), where (r,z) refer to cylindrical coordinates, scaled by the length-scale of the container L. Equation (13) holds, with the modified definitions

(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)

where \(I_{f}^{*}\) is the scaled moment of inertia of the contained fluid (as if it were rotating as a rigid body) and R is the cylindrical radius of the vessel, scaled to L. In a cylinder, one has h(r)=1, L=h, R=r/h, and we recover (14)–(21).

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eysden, C.A., Melatos, A. Interpreting Superfluid Spin Up Through the Response of the Container. J Low Temp Phys 166, 151–170 (2012). https://doi.org/10.1007/s10909-011-0444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0444-z

Keywords

Navigation