Skip to main content
Log in

AC/DC Characterization of a Ti/Au TES with Au/Bi Absorber for X-ray Detection

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Transition-edge sensors (TESs) are used as very sensitive thermometers in microcalorimeters aimed at detection of different wavelengths. In particular, for soft X-ray astrophysics, science goals require very high-resolution microcalorimeters which can be achieved with TESs coupled to suitable absorbers. For many applications, there is also need for a high number of pixels which typically requires multiplexing in the readout stage. Frequency-domain multiplexing (FDM) is a common scheme and is the baseline proposed for the ATHENA mission. FDM requires biasing the TES in AC at MHz frequencies. Recently, there has been reported degradation in performances under AC with respect to DC bias. In order to assess the performances of TESs to be used with FDM, it is thus of great interest to compare the performances of the same device both under AC bias and DC bias. This requires two different measurement set-ups with different processes for making the characterization. We report in this work the preliminary results of a single-pixel characterization performed on a TiAu TES under AC and afterwards under DC bias in different facilities. Extraction of dynamical parameters and noise performances are compared in both cases as a first stage for further AC/DC comparison of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Pajot, D. Barret, T. Lam-Trong, J.-W. den Herder et al., J. Low Temp. Phys. 193, 901 (2018). https://doi.org/10.1007/s10909-018-1904-5

    Article  ADS  Google Scholar 

  2. European Space Agency (ESA), ATHENA Mission Summary (2019). http://sci.esa.int/athena/59896-mission-summary

  3. W.B. Doriese et al., J. Low Temp. Phys. 184, 389 (2016). https://doi.org/10.1007/s10909-015-1373-z

    Article  ADS  Google Scholar 

  4. L. Gottardi, J. van der Kuur, P.A.J. de Korte, R. Den Hartog, B. Dirks, M. Popescu, H.F.C. Hoevers, M. Bruijn, M. Parra Borderias, Y. Takei, in AIP Conference Proceedings, vol. 1185. https://doi.org/10.1063/1.3292399

  5. P. Khosropanah, E. Taralli, L. Gottardi, K. Nagayoshi, M. Ridder, M. Brujin, J.-R. Gao, in Proceedings volume 9144 SPIE Atronomical Telescopes + Insrumentation, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Austin, Texas, USA, 10–15 June 2018, ed. by J.-W.A. den Herder, K. Nakazawa, S. Nikzad

  6. L. Gottardi, J. van der Kuur, M. Bruijn, A. van der Linden, M. Kiviranta, H. Akamatsu, R. den Hartog, K. Ravensberg, J. Low Temp. Phys. 194, 370 (2018). https://doi.org/10.1007/s10909-018-2085-y

    Article  ADS  Google Scholar 

  7. E. Taralli, P. Khosropanah, L. Gottardi, K. Nagayoshi, M.L. Ridder, M.P. Bruijn, J.R. Gao, AIP Adv. 9, 045324 (2019). https://doi.org/10.1063/1.5089739

    Article  ADS  Google Scholar 

  8. C. Pobes, L. Fàbrega, A. Camón, N. Casañ-Pastor, P. Strichovanec, J. Sesé, J. Moral-Vico, R.M. Jáudenes Calleja, IEEE Trans. Appl. Supercond. 27, 2101505 (2017). https://doi.org/10.1109/TASC.2016.2637337

    Article  Google Scholar 

  9. D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge Univ. Press, Cambridge, U.K., 2003)

    MATH  Google Scholar 

  10. S.J. Smith, J.S. Adams, C.N. Bailey, S.R. Bandler, S.E. Busch, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, C.A. Kilbourne, R.L. Kelley, S.-J. Lee, J.-P. Porst, F.S. Porter, J.E. Sadleir, J. Appl. Phys. 114, 074513 (2013). https://doi.org/10.1063/1.4818917

    Article  ADS  Google Scholar 

  11. N. Ullom, J.A. Beall, W.B. Doriese, W. Duncan, S.L. Ferreira, G.C. Hilton, K.D. Irwin, C.D. Reintsema, L.R. Vale, Appl. Phys. Lett. 87, 194103 (2005). https://doi.org/10.1063/1.2061865

    Article  ADS  Google Scholar 

  12. E. Taralli, L. Gottardi, K. Nagayoshi, M. Ridder, S. Visser, P. Khosropanah, M. Bruijn, J.R. Gao, J. Low Temp. Phys. This Special Issue LTD18 (2020). https://doi.org/10.1007/s10909-019-02254-y

Download references

Acknowledgements

This work is partly funded by European Space Agency (ESA) and coordinated with other European efforts under ESA CTP contract ITT AO/1-7947/14/NL/BW. It has also received funding from the European Union’s Horizon 2020 Programme under the AHEAD (Activities for the High-Energy Astrophysics Domain) project with grant agreement number 654215. CSIC work is financed by the Spanish Ministerio de Ciencia, Innovación y Universidades-MICINN (projects ESP2016-76683-C3-2-R and RTI2018-096686-B-C22). Personnel from ICMAB acknowledge financial support from MINECO, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pobes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taralli, E., Pobes, C., Khosropanah, P. et al. AC/DC Characterization of a Ti/Au TES with Au/Bi Absorber for X-ray Detection. J Low Temp Phys 199, 102–109 (2020). https://doi.org/10.1007/s10909-020-02390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02390-w

Keywords

Navigation