Skip to main content
Log in

Observation of Long-Lived UV-Induced Fluorescence from Environmental Materials Using the HVeV Detector as Developed for SuperCDMS

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We describe recent experiments using a SuperCDMS high-voltage single-charge sensitive (HVeV) detector illuminated with an ultraviolet LED (275 nm) and a monochromatic laser (650 nm) using a dual-fiber optic system installed in a small dilution refrigerator at Stanford University. We observed a population of fluorescence background events after UV exposure but not after exposure to the laser source. The fluorescence was likely due to scattered UV photons absorbed outside the detector. We discuss the possibility of fluorescence being a contributor to the low energy excess background observed in above-ground Dark Matter experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Agnese et al., Phys. Rev. Lett. 121, 051301 (2018). https://doi.org/10.1103/PhysRevLett.121.051301

    Article  Google Scholar 

  2. G. Angloher et al., Eur. Phys. J. C 77, 637 (2017). https://doi.org/10.1140/epjc/s10052-017-5223-9

    Article  Google Scholar 

  3. A. Aguilar-Arevalo et al., Phys. Rev. Lett. 118, 141803 (2017). https://doi.org/10.1103/PhysRevLett.118.141803

    Article  Google Scholar 

  4. Q. Arnaud et al., Phys. Rev. D 97, 022003 (2018). https://doi.org/10.1103/PhysRevD.97.022003

    Article  Google Scholar 

  5. M. Crisler et al., Phys. Rev. Lett. 121, 061803 (2018). https://doi.org/10.1103/PhysRevLett.121.061803

    Article  Google Scholar 

  6. R. Essig et al., ArXiv e-printsarXiv:1311.0029

  7. J. Alexander et al., ArXiv e-printsarXiv:1608.08632

  8. R. Essig, J. Mardon, T. Volansky, Phys. Rev. D 85, 076007 (2012). https://doi.org/10.1103/PhysRevD.85.076007

    Article  Google Scholar 

  9. A. Nelson, J. Scholtz, Phys. Rev. D 84, 103501 (2011). https://doi.org/10.1103/PhysRevD.84.103501

    Article  Google Scholar 

  10. B. Holdom, Phys. Lett. B 178, 65 (1986). https://doi.org/10.1016/0370-2693(86)90470-3

    Article  Google Scholar 

  11. Y. Hochberg, T. Lin, K.M. Zurek, Phys. Rev. D 95, 023013 (2017). https://doi.org/10.1103/PhysRevD.95.023013

    Article  Google Scholar 

  12. R.K. Romani et al., Appl. Phys. Lett. 112, 043501 (2018). https://doi.org/10.1063/1.5010699

    Article  Google Scholar 

  13. J. Tiffenberg et al., Phys. Rev. Lett. 119, 131802 (2017). https://doi.org/10.1103/PhysRevLett.119.131802

    Article  Google Scholar 

  14. F. Ponce et al., J. Low Temp. Phys. 199, 598–605 (2020). https://doi.org/10.1007/s10909-020-02349-x

    Article  Google Scholar 

  15. F. Ponce et al., Phys. Rev. D 101, 031101(R) (2020). https://doi.org/10.1103/PhysRevD.101.031101

    Article  Google Scholar 

  16. P. Du, D. Egana-Ugrinovic, R. Essig, M. Sholapurkar, ArXiv e-printsarXiv:2011.13939v1

  17. N.A. Kurinsky, Ph.D. thesis, Stanford University, Dept. Phys. (2018)

  18. B. Neganov, V. Trofimov, Otkrytia i Izobret, 146, 215 (1985), USSR Patent No. 1037771 (1981) (in Russian)

  19. P.N. Luke, J. Appl. Phys. 64, 6858 (1988). https://doi.org/10.1063/1.341976

    Article  Google Scholar 

  20. G.E. Jellison Jr., F.A. Modine, J. Appl. Phys. 53, 3745–3753 (1982). https://doi.org/10.1063/1.331113

    Article  Google Scholar 

  21. M.A. Green, M.J. Keevers, Prog. Photovolt. Res. Appl. 3, 189–192 (1995). https://doi.org/10.1002/pip.4670030303

    Article  Google Scholar 

  22. A.N. Trukhin et al., J. Non-Cryst. Solids 331, 91–99 (2003). https://doi.org/10.1016/j.jnoncrysol.2003.08.080

    Article  Google Scholar 

  23. V. Spizzichino, L. Caneve, F. Colao, L. Ruggiero, Appl. Spectrosc. 70(6), 1001–1008 (2016). https://doi.org/10.1177/0003702816641267

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Department of Energy and by the National Science Foundation. PNNL is operated by the Battelle Memorial Institute for the US Department of Energy under contract DE-AC05-76RL01830. SLAC is operated by Stanford University under Contract No. DEAC02-76SF00515 with the US Department of Energy. The authors are also especially grateful to the staff of the Varian Machine Shop at Stanford University for their assistance in machining the parts used in this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ponce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponce, F., Brink, P.L., Cabrera, B. et al. Observation of Long-Lived UV-Induced Fluorescence from Environmental Materials Using the HVeV Detector as Developed for SuperCDMS. J Low Temp Phys 209, 1172–1179 (2022). https://doi.org/10.1007/s10909-022-02802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02802-z

Keywords

Navigation