Skip to main content
Log in

Exact solutions of lattice polymer models

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We consider directed path models of a selection of polymer and vesicle problems. Each model is used to illustrate an important method of solving lattice path enumeration problems. In particular, the Temperley method is used for the polymer collapse problem. The ZL method is used to solve the semi-continuous vesicle model. The Constant Term method is used to solve a set of partial difference equations for the polymer adsorption problem. The Kernel method is used to solve the functional equation that arises in the polymer force problem. Finally, the Transfer Matrix method is used to solve a problem in colloid dispersions. All these methods are combinatorially similar as they all construct equations by considering the action of adding an additional column to the set of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bousquet-Melou M.: Contemp. Math. 178, 55 (1994)

    Google Scholar 

  2. Bousquet-Melou M.: Discrete Math. 154, 1 (1996)

    Article  Google Scholar 

  3. Bousquet-Melou M., Schaeffer G.: Probab. Theroy Related Fields 124(3), 305 (2002)

    Article  Google Scholar 

  4. Bousquet-Melou M., Rechnitzer A.: Adv. Appl. Math. 31, 86 (2003)

    Article  Google Scholar 

  5. Bousquet-Melou M.: Ann. Appl. Probab. 15, 1451 (2005)

    Article  Google Scholar 

  6. M. Bousquet-Melou, Three osculating walkers (2005), arXiv:math.CO/0504153

  7. E.J. Janse van Rensburg, T. Prellberg, A. Rechnitzer, J. Combin. Theory Ser. A (2007), Arxiv preprint math.CO/0609834

  8. Bethe H.A.: Z. Phys. 71, 205 (1931)

    Article  CAS  Google Scholar 

  9. Brak R., Essam J., Owczarek A.L.: Ann. Comb. 3, 251 (1998)

    Article  Google Scholar 

  10. Gessel I.M., Viennot G.: Adv. Math. 58, 300 (1985)

    Article  Google Scholar 

  11. I.M. Gessel, X. Viennot, Determinants, paths, and plane partitions. Preprint (1989)

  12. Brak R., Guttmann A.J., Whittington S.G.: J. Phys. A 25, 2437 (1992)

    Article  CAS  Google Scholar 

  13. Temperley H.N.V.: Phys. Rev. 103, 1 (1956)

    Article  CAS  Google Scholar 

  14. Brak R., Owczarek A.L., Prellberg T.: J. Stat. Phys. 76, 1101 (1994)

    Article  Google Scholar 

  15. Zwanzig R., Lauritzen J.I. Jr.: J. Chem. Phys. 48, 3351 (1968)

    Article  CAS  Google Scholar 

  16. Owczarek A.L., Prellberg T.: J. Stat. Phys. 70, 1175 (1993)

    Article  Google Scholar 

  17. Temperley H.N.V.: Phys. Rev. 103, 1 (1956)

    Article  CAS  Google Scholar 

  18. Owczarek A.L., Prellberg T., Brak R.: J. Stat. Phys. 72, 737 (1993)

    Article  Google Scholar 

  19. Polya D.: J. Combin. Theory 6, 102 (1969)

    Article  Google Scholar 

  20. R. Brak, J. Osborn, The consant term method for lattice paths. Preprint (2007)

  21. Brak R., Essam J.W., Owczarek A.: J. Stat. Phys. 93, 155 (1998)

    Article  Google Scholar 

  22. G. Xin, The Ring of Malcev-Neumann Series and the Residue Theorem, Ph.D. thesis, Brandeis University, 2004

  23. D. Knuth, The Art of Computer Programming: Fundamental Algorithms, vol. 1 (Addison Wesley, MA, 1968), p. 531

  24. H.S. Wilf, Generating functionology, 1st edn. (Academic Press, 1990), p. 11

  25. Brak R., Iliev G.K., Rechnitzer A., Whittington S.G.: J. Phys. A: Math. Theor. 40, 4415 (2007)

    Article  Google Scholar 

  26. Brak R., Essam J., Osborn J., Owczarek A., Rechnitzer A.: J. Phys. Conf. Ser. 42, 47 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rechnitzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brak, R., Owczarek, A.L. & Rechnitzer, A. Exact solutions of lattice polymer models. J Math Chem 45, 39–57 (2009). https://doi.org/10.1007/s10910-008-9366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9366-7

Keywords

Navigation