Skip to main content
Log in

Modeling force-induced bio-polymer unfolding

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We study the conformations of polymer chains in a poor solvent, with and without bending rigidity, by means of a simple statistical mechanics model. This model can be exactly solved for chains of length up to N = 55 using exact enumeration techniques. We analyze in detail the differences between the constant force and constant distance ensembles for large but finite N. At low temperatures, and in the constant force ensemble, the force–extension curve shows multiple plateaus (intermediate states), in contrast with the abrupt transition to an extended state prevailing in the N → ∞ limit. In the constant distance ensemble, the same curve provides a unified response to pulling and compressing forces, and agrees qualitatively with recent experimental results. We identify a cross-over length, proportional to N, below which the critical force of unfolding decreases with temperature, while above, it increases with temperature. Finally, the force–extension curve for stiff chains exhibits “saw-tooth” like behavior, as observed in protein unfolding experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rief M. et al.: Science 276, 1109 (1997)

    Article  CAS  Google Scholar 

  2. M.S.Z. Kellermayer et al., Science 276, 1112 (1997); L. Tskhovrebova et al., Nature 387, 308 (1997)

    Google Scholar 

  3. Bustamante C. et al.: Annu. Rev. Biochem. 73, 705 (2004)

    Article  CAS  Google Scholar 

  4. Itzhaki L.S., Evans P.A.: Protein Sci. 5, 140 (1996)

    Article  CAS  Google Scholar 

  5. I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 882 (2001); Biophys. J. 80, 894 (2001)

    Google Scholar 

  6. E. Evans, K. Ritchie, Biophys. J. 72, 1541 (1997); Biophys. J. 76, 2439 (1999)

    Google Scholar 

  7. Bhattacharjee S.M.: J. Phys. A 33, L423 (2000)

    Article  CAS  Google Scholar 

  8. Bustamante C., Bryant Z., Smith S.B.: Nature 421, 423 (2003)

    Article  CAS  Google Scholar 

  9. Haupt B.J., Senden T.J., Sevick E.M.: Langmuir 18, 2174 (2002)

    Article  CAS  Google Scholar 

  10. de Gennes P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca (1979)

    Google Scholar 

  11. Mao H. et al.: Biophys. J. 89, 1308 (2005)

    Article  CAS  Google Scholar 

  12. A.S. Lemak, J.R. Lepock, J.Z.Y. Chen, Phys. Rev. E 67, 031910 (2003); Proteins: Struct. Funct. Genet. 51 224 (2003)

    Google Scholar 

  13. Bustamante C., Liphardt J., Ritort F.: Phys. Today 58, 43 (2005)

    Article  CAS  Google Scholar 

  14. Zemanova M., Bleha T.: Macromol. Theory Simul. 14, 596 (2005)

    Article  CAS  Google Scholar 

  15. Fixman M.: J. Chem. Phys. 58, 1559 (1973)

    Article  CAS  Google Scholar 

  16. Doi M., Edwards S.F.: Theory of Polymer Dynamics. Oxford University Press, Oxford (1988)

    Google Scholar 

  17. Bastolla U., Grassberger P.: J. Stat. Phys. 89, 1061 (1997)

    Article  Google Scholar 

  18. Doniach S., Garel T., Orland H.: J. Chem. Phys. 105, 1601 (1996)

    Article  CAS  Google Scholar 

  19. Kumar S. et al.: Phys. Rev. Lett. 98, 128101 (2007)

    Article  CAS  Google Scholar 

  20. Vanderzande C.: Lattice Models of Polymers. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  21. A.J. Guttmann, in Phase Transitions and Critical Phenomena, vol. 13, ed. by C. Domb, J.L. Lebowitz (Academic Press, New York, 1989)

  22. Singh Y., Giri D., Kumar S.: J. Phys. A 34, L67 (2001)

    Article  CAS  Google Scholar 

  23. Marenduzzo D. et al.: Phys. Rev. Lett. 90, 088301 (2003)

    Article  CAS  Google Scholar 

  24. S. Kumar, D. Giri, Phys. Rev. E 72, 052901 (2005); Phys. Rev. Lett. 98, 048101 (2007)

    Google Scholar 

  25. Jensen I.: J. Phys. A 37, 5503 (2004)

    Article  Google Scholar 

  26. E. Orlandini et al., J. Phys. A 34, L751 (2001); D. Marenduzzo et al., Phys. Rev. Lett. 88, 028102 (2002)

  27. Dietz H., Rief M.: PNAS 101, 16192 (2004)

    Article  CAS  Google Scholar 

  28. Guffond M.C., Williams D.R.M., Sevick E.M.: Langmuir 13, 5691 (1997)

    Article  CAS  Google Scholar 

  29. Jimenez J., Rajagopalan R.: Langmuir 14, 2598 (1998)

    Article  CAS  Google Scholar 

  30. Rief M. et al.: Science 275, 1295 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwan Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttmann, A.J., Jacobsen, J.L., Jensen, I. et al. Modeling force-induced bio-polymer unfolding. J Math Chem 45, 223–237 (2009). https://doi.org/10.1007/s10910-008-9377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-008-9377-4

Keywords

Navigation