Skip to main content
Log in

Non-smooth feedback control for Belousov–Zhabotinskii reaction–diffusion equations: semi-analytical solutions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Belousov–Zhabotinskii reaction is considered in one and two-dimensional reaction–diffusion cells. Feedback control is examined where the feedback mechanism involves varying the concentrations in the boundary reservoir, in response to the concentrations in the centre of the cell. Semi-analytical solutions are developed, via the Galerkin method, which assumes a spatial structure for the solution, and is used to approximate the governing delay partial differential equations by a system of delay ordinary differential equations. The form of feedback control considered, whilst physically realistic, is non-smooth as it has discontinuous derivatives. A stability analysis of the sets of smooth delay ordinary differential equations, which make up the full non-smooth system, allows a band of Hopf bifurcation parameter space to be obtained. It is found that Hopf bifurcations for the full non-smooth system fall within this band of parameter space. In the case of feedback with no delay a precise semi-analytical estimate for the stability of the full non-smooth system can be obtained, which corresponds well with numerical estimates. Examples of limit cycles and the transient evolution of solutions are also considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.M.L. Corbel, J.N.J. Van Lingen, J.F. Zevenbergen, O.L.J. Gijzeman, A. Meijerink, Strobes: pyrotechnic compositions that show a curious oscillatory combustion. Angew. Chem. Int. Ed. 52, 290–303 (2013)

    Article  CAS  Google Scholar 

  2. B.P. Belousov, An oscillating reaction and its mechanism. Sborn. referat. radiat. med. (Medgiz, Moscow, 1959), p. 145

  3. F. Sagues, I.R. Epstein, Nonlinear chemical dynamics. Dalton. Trans. 7, 1201–1217 (2003)

    Article  Google Scholar 

  4. R.J. Field, E. Körös, R. Noyes, Oscillations in chemical systems. II. thorough analysis of temporal oscillation in the Bromate–Cerium–Malonic Acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)

    Article  CAS  Google Scholar 

  5. R.J. Field, R.M. Noyes, Oscillations in chemical systems. IV. limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  CAS  Google Scholar 

  6. J.J. Tyson, The Belousov–Zhabotinskii Reaction (Springer, New York, 1976)

    Book  Google Scholar 

  7. J.J. Tyson, Oscillations, Bistability and echo waves in models of the Belousov–Zhabotinskii reaction. Ann. NY. Acad. Sci. 316, 279–295 (1979)

    Article  CAS  Google Scholar 

  8. T.R. Marchant, Cubic autocatalytic reaction–diffusion equations: semi-analytical solutions. Proc. R. Soc. Lond. A458, 873–888 (2002)

    Article  Google Scholar 

  9. T.R. Marchant, Cubic autocatalysis with Michaelis–Menten kinetics: semi-analytical solutions for the reaction–diffusion cell. Chem. Eng. Sci. 59, 3433–3440 (2004)

    Article  CAS  Google Scholar 

  10. L. Forbes, Stationary patterns of chemical concentration in the Belousov–Zhabotinskii reaction. Phys. D 43, 140–152 (1990)

    Article  CAS  Google Scholar 

  11. L. Forbes, On stability and uniqueness of stationary one-dimensional patterns in the Belousov–Zhabotinsky reaction. Phys. D 50, 42–58 (1991)

    Article  CAS  Google Scholar 

  12. Z. Noszticzius, W. Horstemke, W.D. McCromick, H.L. Swinney, W. Tam, Sustained chemical waves in an annular gel reactor: a chemical pinwheel. Nature 329, 619–620 (1987)

    Article  CAS  Google Scholar 

  13. W. Tam, W. Horstemke, Z. Noszticzius, H.L. Swinney, Sustained sprial waves in a continuously fed unstrirred chemical reactor. J. Chem. Phys. 88, 3395–3396 (1988)

    Article  CAS  Google Scholar 

  14. S. Bagyan, T. Mair, E. Dulos, J. Boissonade, P. DeKepper, S. Muller, Glycolytic oscillations and waves in an open spatial reactor: impact of feedback regulation of phosphofructokinase. Biophys. Chem. 116, 67–76 (2005)

    Article  CAS  Google Scholar 

  15. A. Lavrova, S. Bagyan, T. Mair, M. Hauser, L. Schimansky-Geier, Modeling of glycolytic wave propagation in an open spatial reactor with inhomogeneous substrate flux. Biosystems 97, 127–133 (2005)

    Article  Google Scholar 

  16. K. Sriram, Effects of positive electrical feedback in the oscillating Belousov–Zhabotinsky reaction: experiments and simulations. Chaos Soliton Fract. 28, 1055–1066 (2006)

    Article  CAS  Google Scholar 

  17. R. Zhu, L. Qian, Eliminating chaos in the Belousov–Zhabotinsky reaction by no-delay feedback and delayed feedback. Theor. Chem. Acc. 110, 85–91 (2003)

    Article  CAS  Google Scholar 

  18. L. Györgyi, R.J. Field, A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction. Nature 335, 808–810 (1992)

    Article  Google Scholar 

  19. G. Lipták, G. Szederkényi, K.M. Hangos, Hamiltonian feedback design for mass action law chemical reaction networks. IFAC Pap. Online 48–13, 158–163 (2015)

    Article  Google Scholar 

  20. V. Vanag, I.R. Epstein, Design and control of patterns in reaction–diffusion systems. Chaos 18, 026107 (2008)

    Article  Google Scholar 

  21. M. di Bernardo, C. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications (Springer, London, 2008)

    Google Scholar 

  22. M.K. Camlibel, W. Heemels, J.M. Schumacher, Stability and controllability of planar linear bimodal complementarity systems, in Proceedings of the 42nd IEEE Conference on decision and control, Hawai, USA 1651–1656 (2003)

  23. R. Csikja, B.M. Garay, J. Tóth, Chaos via two-valued interval maps in a piecewise affine model example for hysteresis, in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, Hungary 187–194 (2010)

  24. H. Takada, Y. Shimizu, M. Miyao, The number of autocatalytic reactions in systems of oscillating reactions. Forma 18, 67–82 (2003)

    Google Scholar 

  25. V. Vanag, A. Zhabotinsky, I. Epstein, Pattern formation in the Belousov–Zhabotinsky reaction with photochemical global feedback. J. Phys. Chem. A 104, 11566–11577 (2000)

    Article  CAS  Google Scholar 

  26. W. Jahne, A.T. Winfree, A survey of spiral wave behaviours in the Oregonator model. Int. J. Bifurc. Chaos 1, 445 (1991)

    Article  Google Scholar 

  27. D.L. Ropp, J.N. Shadid, Stability of operator splitting methods for systems with indefinite operators: reaction–diffusion systems. J. Comput. Phys. 203, 449–466 (2005)

    Article  Google Scholar 

  28. H.Y. Alfifi, T.R. Marchant, M.I. Nelson, Generalised diffusive delay logistic equations: semi-analytical solutions. Dynam. Cont. Dis. Ser. B 19, 579–596 (2012)

    Google Scholar 

  29. H.Y. Alfifi, T.R. Marchant, M.I. Nelson, Semi-analytical solutions for the 1- and 2-D diffusive Nicholson’s blowflies equation. IMA J. Appl. Math. 79, 175–199 (2014)

    Article  Google Scholar 

  30. T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)

    Google Scholar 

  31. J. Hale, Theory of Functional Differential Equations (Springer Verlag, New York, 1977)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank an anonymous referee for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Marchant.

Appendix: Expressions for the semi-analytical ODEs

Appendix: Expressions for the semi-analytical ODEs

This appendix presents relevant expression for for the semi-analytical models. The \(M_i\) for the 1-D model (6) are

$$\begin{aligned}&M_1=\frac{2H}{\epsilon }u_dv_d+\frac{2H}{\epsilon }u_d^2-\frac{20H}{3\epsilon \pi }u_d v_d -\frac{1}{\epsilon }u_d+\frac{16u_1}{3\epsilon \pi }u_d+\frac{16u_2}{15\epsilon \pi }u_d\\&\qquad \quad +\,\frac{8u_1}{3\epsilon \pi }v_d +\frac{k \pi ^2}{4}u_d-\frac{q}{\epsilon }v_d \\&\qquad \quad +\,\frac{8v_2}{15\epsilon \pi }u_d-\frac{v_1}{\epsilon }u_d -\frac{20H}{3\epsilon \pi }u_d^2-\frac{2u_1}{\epsilon }u_d-\frac{u_1}{\epsilon }v_d, \\&M_2=\frac{2H}{\delta }u_d v_d+\frac{8u_1}{3\delta \pi }v_d-\frac{20H}{3\delta \pi }u_d v_d +\frac{8v_2}{15\delta \pi }u_d-\frac{u_1}{\delta }v_d\\&\quad \quad \quad -\,\frac{4q}{\delta \pi }v_d+\frac{8v_1}{3\delta \pi }u_d +\frac{k \pi ^2}{4}v_d-\frac{v_1}{\delta }u_d\\&\quad -\,\frac{f}{\delta }w_d+\frac{8u_2}{15\delta \pi }v_d +\frac{4f}{\delta \pi }w_d+\frac{q}{\delta }v_d, \\&M_3=\frac{4}{\pi }u_d-u_d+w_d+\frac{k \pi ^2}{4}w_d-\frac{4}{\pi }w_d,\\&M_4=\frac{8v_1}{15\epsilon \pi }u_d+\frac{8u_1}{15\epsilon \pi }v_d+\frac{144}{35\epsilon \pi }u_d-\frac{4}{3\epsilon \pi }u_d +\frac{4H}{5\epsilon \pi }u_d v_d\\&\qquad \quad +\,\frac{4H}{5\epsilon \pi }u_d^2+\frac{72 u_2}{35\epsilon \pi }v_d -\frac{2u_2}{\epsilon }u_d+\frac{16u_1}{15\epsilon \pi }u_d\\&\quad \qquad +\,\frac{72v_2}{35\epsilon \pi }u_d -\frac{v_2}{\epsilon }u_d-\frac{u_2}{\epsilon }v_d+\frac{4q}{3\epsilon \pi }v_d,\\&M_5=\frac{4q}{3\delta \pi }v_d-\frac{4f}{3\delta \pi }w_d+\frac{72v_2}{35\delta \pi }u_d+\frac{72u_2}{35\delta \pi }v_d +\frac{4}{5\delta \pi }u_d v_d+\frac{8u_1}{15\delta \pi }v_d\\&\quad \qquad +\,\frac{8v_1}{15\delta \pi }u_d -\frac{u_2}{\delta }v_d-\frac{v_2}{\delta } u_d, \\&M_6=\frac{4}{3\pi }w_d-\frac{4}{3\pi }u_d. \end{aligned}$$

The \(N_i\) for the 2-D model (8) are

$$\begin{aligned}&N_1=\frac{64u_1}{9\epsilon \pi ^2}v_d+\frac{128v_2}{45\epsilon \pi ^2}u_d+\frac{16 q}{\epsilon \pi ^2}v_d^2+\frac{128u_2}{45\epsilon \pi ^2}u_d +\,\frac{2H}{\epsilon }u_d^2+\frac{64v_1}{9\epsilon \pi ^2}u_d-\frac{q}{\epsilon }v_d\\&\qquad \quad +\frac{k\pi ^2}{2}u_d +\,\frac{256 u_2}{45 \epsilon \pi ^2}u_d \\&\quad \qquad +\,\frac{16}{\epsilon \pi ^2}u_d -\frac{208H}{9\epsilon \pi ^2}u_dv_d +\frac{2H}{\epsilon }u_dv_d-\frac{208H}{9\epsilon \pi ^2}u_d^2-\frac{2u_1}{\epsilon }u_d +\frac{128u_1}{9\epsilon \pi ^2}u_d\\&\quad \qquad -\,\frac{v_1}{\epsilon }u_d-\frac{u_1}{\epsilon }v_d-\frac{1}{\epsilon }u_d, \\&N_2=-\frac{208H}{9\delta \pi ^2}v_du_d+\frac{2H}{\delta }v_du_d+\frac{64v_1}{9\delta \pi ^2 }u_d +\frac{k\pi ^2}{2}v_d+\frac{128v_2}{45\delta \pi ^2 }u_d+\frac{64u_1}{9\delta \pi ^2 }v_d\\&\qquad \quad -\,\frac{v_1}{\delta }u_d -\frac{16q}{\delta \pi ^2 }v_d+\frac{q}{\delta \pi ^2 }v_d\\&\quad \qquad +\,\frac{16 f}{\delta \pi ^2 }w_d-\frac{f}{\delta }w_d+\frac{128u_2}{45\delta \pi ^2 }v_d-\frac{u_1}{\delta }v_d,\\&N_3=\frac{k\pi ^2}{2}w_d-\frac{16}{\pi ^2}w_d+\frac{16}{\pi ^2}u_d+w_d-u_d,\\&N_4=-\frac{16q}{3\epsilon \pi ^2}v_d-\frac{2u_2}{\epsilon }u_d+\frac{9088u_2}{1575 \epsilon \pi ^2}v_d-\frac{v_2}{\epsilon }u_d +\frac{176H}{45\epsilon \pi ^2}u_d^2+\frac{176H}{45\epsilon \pi ^2}u_dv_d\\&\quad \qquad +\,\frac{64v_1}{45\epsilon \pi ^2}u_d +\frac{9088 v_2}{1575\epsilon \pi ^2}u_d \\&\quad \qquad +\,\frac{64u_1}{45\epsilon \pi ^2}v_d+\frac{18176u_2}{1575\epsilon \pi ^2}u_d +\frac{128u_1}{45\epsilon \pi ^2}u_d -\frac{u_2}{\epsilon }v_d-\frac{16}{3\epsilon \pi ^2}u_d, \\&N_5=\frac{16 q}{3\delta \pi ^2 }v_d-\frac{v_2}{\delta }u_d+\frac{64v_1}{45\delta \pi ^2 }u_d+\frac{9088u_2}{1575\delta \pi ^2}v_d +\frac{176H}{45\delta \pi ^2}u_dv_d+\frac{64u_1}{45\delta \pi ^2}v_d\\&\quad \qquad -\,\frac{16 f}{3\delta \pi ^2}w_d +\frac{9088 v_2}{1575\delta \pi ^2}u_d -\frac{u_2}{\delta } v_d, \\&N_6=\frac{16}{3\pi ^2}w_d-\frac{16}{3\pi ^2}u_d. \end{aligned}$$

The delay terms are defined as

$$\begin{aligned}&u_d=|u_{1s}+u_{2s}\!-\!u_1(t-\tau )\!-\!u_2(t-\tau )|, \ \ v_d\!=\!|v_{1s}\!+\!v_{2s}-v_1(t-\tau )-v_2(t-\tau )|, \\&w_d=|w_{1s}+w_{2s}-w_1(t-\tau )-w_2(t-\tau )|. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfifi, H.Y., Marchant, T.R. & Nelson, M.I. Non-smooth feedback control for Belousov–Zhabotinskii reaction–diffusion equations: semi-analytical solutions. J Math Chem 54, 1632–1657 (2016). https://doi.org/10.1007/s10910-016-0641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-016-0641-8

Keywords

Mathematics Subject Classification

Navigation