Skip to main content

Advertisement

Log in

The Molecular Culprits Underlying Precocious Mammary Gland Involution

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary gland involution, characterized by extensive apoptosis and structural remodelling of the gland, is the process by which the gland is returned to the pre-pregnant state. A key advantage of the mammary gland is the ability to synchronize involution through forced weaning, thus allowing the dissection of biochemical pathways involved in the involution process. Over the past few years, significant advances have been made in understanding the signaling pathways and downstream effectors that regulate epithelial cell apoptosis in the first phase of involution, and the importance of matrix metalloproteinases and their inhibitors in both phases of involution. The precise nature of the triggers for apoptosis, however, and the ultimate perpetrators of cell death are not yet clear. This review focuses on genes whose perturbation, either by targeted deletion or overexpression in transgenic mouse models, leads to precocious involution. The accumulating data point to a complex network of signal transduction pathways that synergize to regulate apoptosis in the involuting mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

suppressor of cytokine signaling:

(SOCS)

Janus kinase:

(JAK)

signal transducer and activator of transcription:

(STAT)

prolactin:

(PRL)

matrix metalloproteinases:

(MMP)

tissue inhibitors of metalloproteinases:

(TIMPs)

mouse mammary tumor viral LTR:

(MMTV)

References

  1. Feng Z, Marti A, Jehn B, Altermatt HJ, Chicaiza G, Jaggi R. Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 1995;131(4):1095–103.

    Article  PubMed  CAS  Google Scholar 

  2. Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development 1996;122(1):181–93.

    PubMed  CAS  Google Scholar 

  3. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci USA 1997;94(7):3425–30.

    Article  PubMed  CAS  Google Scholar 

  4. Marti A, Feng Z, Altermatt HJ, Jaggi R. Milk accumulation triggers apoptosis of mammary epithelial cells. Eur J Cell Biol 1997;73(2):158–65.

    PubMed  CAS  Google Scholar 

  5. Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. BioEssays 2005;27(9):894–903.

    Article  PubMed  CAS  Google Scholar 

  6. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2004;6(2):R92–109.

    Article  PubMed  CAS  Google Scholar 

  7. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–91.

    Article  PubMed  CAS  Google Scholar 

  8. Liu X, Robinson GW, Hennighausen L. Activation of Stat5a and Stat5b by tyrosine phosphorylation is tightly linked to mammary gland differentiation. Mol Endocrinol 1996;10(12):1496–506.

    Article  PubMed  CAS  Google Scholar 

  9. Philp JA, Burdon TG, Watson CJ. Differential activation of STATs 3 and 5 during mammary gland development. FEBS Lett 1996;396(1):77–80.

    Article  PubMed  CAS  Google Scholar 

  10. Clarkson RW, Boland MP, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, et al. The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol 2006;20(3):675–85.

    Article  PubMed  CAS  Google Scholar 

  11. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 1997;11(2):179–86.

    PubMed  CAS  Google Scholar 

  12. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol 2004;24(18):8037–47.

    Article  PubMed  CAS  Google Scholar 

  13. Iavnilovitch E, Groner B, Barash I. Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol Cancer Res 2002;1(1):32–47.

    PubMed  CAS  Google Scholar 

  14. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 1999;13(19):2604–16.

    Article  PubMed  CAS  Google Scholar 

  15. Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, et al. A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development 2003;130(15):3459–68.

    Article  PubMed  CAS  Google Scholar 

  16. Schwertfeger KL, Richert MM, Anderson SM. Mammary gland involution is delayed by activated Akt in transgenic mice. Mol Endocrinol 2001;15(6):867–81.

    Article  PubMed  CAS  Google Scholar 

  17. Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 2004;22:503–29.

    Article  PubMed  CAS  Google Scholar 

  18. Tonko-Geymayer S, Goupille O, Tonko M, Soratroi C, Yoshimura A, Streuli C, et al. Regulation and function of the cytokine-inducible SH-2 domain proteins, CIS and SOCS3, in mammary epithelial cells. Mol Endocrinol 2002;16(7):1680–95.

    Article  PubMed  CAS  Google Scholar 

  19. Sutherland KD, Vaillant F, Alexander WS, Forrest NC, Holroyd S, McManus EJ, et al. c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3. EMBO J 2006;25(24):5805–15.

    Article  PubMed  CAS  Google Scholar 

  20. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 2003;4(6):540–5.

    Article  PubMed  CAS  Google Scholar 

  21. Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, et al. SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 2003;4(6):546–50.

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi Y, Carpino N, Cross JC, Torres M, Parganas E, Ihle JN. SOCS3: an essential regulator of LIF receptor signaling in trophoblast giant cell differentiation. EMBO J 2003;22(3):372–84.

    Article  PubMed  CAS  Google Scholar 

  23. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 2003;4(6):551–6.

    Article  PubMed  CAS  Google Scholar 

  24. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003;374(Pt 1):1–20.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao L, Hart S, Cheng J, Melenhorst JJ, Bierie B, Ernst M, et al. Mammary gland remodeling depends on gp130 signaling through Stat3 and MAPK. J Biol Chem 2004;279(42):44093–100.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao L, Melenhorst JJ, Hennighausen L. Loss of interleukin 6 results in delayed mammary gland involution: a possible role for mitogen-activated protein kinase and not signal transducer and activator of transcription 3. Mol Endocrinol 2002;16(12):2902–12.

    Article  PubMed  CAS  Google Scholar 

  27. Stross C, Radtke S, Clahsen T, Gerlach C, Volkmer-Engert R, Schaper F, et al. Oncostatin M receptor-mediated signal transduction is negatively regulated by suppressor of cytokine signaling (SOCS) 3 through a receptor tyrosine-independent mechanism. J Biol Chem 2006;281(13):8458–68.

    Article  PubMed  CAS  Google Scholar 

  28. Nakamura K, Nonaka H, Saito H, Tanaka M, Miyajima A. Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice. Hepatology 2004;39(3):635–44.

    Article  PubMed  CAS  Google Scholar 

  29. Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K, et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999;189(1):63–73.

    Article  PubMed  CAS  Google Scholar 

  30. Levy DE, Lee CK. What does Stat3 do? J Clin Invest 2002;109(9):1143–8.

    Article  PubMed  CAS  Google Scholar 

  31. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 2005;132(5):885–96.

    Article  PubMed  CAS  Google Scholar 

  32. Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 1992;115(1):49–58.

    PubMed  CAS  Google Scholar 

  33. Blakely CM, Sintasath L, D’Cruz CM, Hahn KT, Dugan KD, Belka GK, et al. Developmental stage determines the effects of MYC in the mammary epithelium. Development 2005;132(5):1147–60.

    Article  PubMed  CAS  Google Scholar 

  34. Strange KS, Wilkinson D, Emerman JT. Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast epithelial cells in primary culture. Breast Cancer Res Treat 2002;75(3):203–12.

    Article  PubMed  CAS  Google Scholar 

  35. Stull MA, Richert MM, Loladze AV, Wood TL. Requirement for IGF-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. Endocrinology 2002;143(5):1872–9.

    Article  PubMed  CAS  Google Scholar 

  36. Neuenschwander S, Schwartz A, Wood TL, Roberts CT, Jr., Hennighausen L, LeRoith D. Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J Clin Invest 1996;97(10):2225–32.

    Article  PubMed  CAS  Google Scholar 

  37. Moorehead RA, Fata JE, Johnson MB, Khokha R. Inhibition of mammary epithelial apoptosis and sustained phosphorylation of Akt/PKB in MMTV-IGF-II transgenic mice. Cell Death Differ 2001;8(1):16–29.

    Article  PubMed  CAS  Google Scholar 

  38. Flint DJ, Tonner E, Allan GJ. Insulin-like growth factor binding proteins: IGF-dependent and -independent effects in the mammary gland. J Mammary Gland Biol Neoplasia 2000;5(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  39. Tonner E, Barber MC, Travers MT, Logan A, Flint DJ. Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 1997;138(12):5101–7.

    Article  PubMed  CAS  Google Scholar 

  40. Marshman E, Green KA, Flint DJ, White A, Streuli CH, Westwood M. Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells. J Cell Sci 2003;116(Pt 4):675–82.

    Article  PubMed  CAS  Google Scholar 

  41. Tonner E, Barber MC, Allan GJ, Beattie J, Webster J, Whitelaw CB, et al. Insulin-like growth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. Development 2002;129(19):4547–57.

    PubMed  CAS  Google Scholar 

  42. Abell K, Bilancio A, Clarkson RW, Tiffen PG, Altaparmakov AI, Burdon TG, et al. Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol 2005;7(4):392–8.

    Article  PubMed  CAS  Google Scholar 

  43. Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, et al. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 1997;57(23):5221–5.

    PubMed  CAS  Google Scholar 

  44. Dupont J, Renou JP, Shani M, Hennighausen L, LeRoith D. PTEN overexpression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium. J Clin Invest 2002;110(6):815–25.

    Article  PubMed  CAS  Google Scholar 

  45. Ackler S, Ahmad S, Tobias C, Johnson MD, Glazer RI. Delayed mammary gland involution in MMTV-AKT1 transgenic mice. Oncogene 2002;21(2):198–206.

    Article  PubMed  CAS  Google Scholar 

  46. Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev 2003;17(20):2481–95.

    Article  PubMed  CAS  Google Scholar 

  47. Li M, Hu J, Heermeier K, Hennighausen L, Furth PA. Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53-independent pathways. Cell Growth Differ 1996;7(1):13–20.

    PubMed  CAS  Google Scholar 

  48. Heermeier K, Benedict M, Li M, Furth P, Nunez G, Hennighausen L. Bax and Bcl-xs are induced at the onset of apoptosis in involuting mammary epithelial cells. Mech Dev 1996;56(1–2):197–207.

    Article  PubMed  CAS  Google Scholar 

  49. Metcalfe AD, Gilmore A, Klinowska T, Oliver J, Valentijn AJ, Brown R, et al. Developmental regulation of Bcl-2 family protein expression in the involuting mammary gland. J Cell Sci 1999;112(Pt 11):1771–83.

    PubMed  CAS  Google Scholar 

  50. Walton KD, Wagner KU, Rucker EB, 3rd, Shillingford JM, Miyoshi K, Hennighausen L. Conditional deletion of the bcl-x gene from mouse mammary epithelium results in accelerated apoptosis during involution but does not compromise cell function during lactation. Mech Dev 2001;109(2):281–93.

    Article  PubMed  CAS  Google Scholar 

  51. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000;191(6):977–84.

    Article  PubMed  CAS  Google Scholar 

  52. Chapman RS, Duff EK, Lourenco PC, Tonner E, Flint DJ, Clarke AR, et al. A novel role for IRF-1 as a suppressor of apoptosis. Oncogene 2000;19(54):6386–91.

    Article  PubMed  CAS  Google Scholar 

  53. Yuan J, Wegenka UM, Lutticken C, Buschmann J, Decker T, Schindler C, et al. The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements. Mol Cell Biol 1994;14(3):1657–68.

    PubMed  CAS  Google Scholar 

  54. Bagheri-Yarmand R, Vadlamudi RK, Kumar R. Activating transcription factor 4 overexpression inhibits proliferation and differentiation of mammary epithelium resulting in impaired lactation and accelerated involution. J Biol Chem 2003;278(19):17421–9.

    Article  PubMed  CAS  Google Scholar 

  55. Vallejo M, Ron D, Miller CP, Habener JF. C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci USA 1993;90(10):4679–83.

    Article  PubMed  CAS  Google Scholar 

  56. Gigliotti AP, DeWille JW. Lactation status influences expression of CCAAT/enhancer binding protein isoform mRNA in the mouse mammary gland. J Cell Physiol 1998;174(2):232–9.

    Article  PubMed  CAS  Google Scholar 

  57. Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L, et al. C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 2005;132(21):4675–85.

    Article  CAS  Google Scholar 

  58. Talhouk RS, Bissell MJ, Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol 1992;118(5):1271–82.

    Article  PubMed  CAS  Google Scholar 

  59. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 2000;14(17):2123–33.

    Article  PubMed  CAS  Google Scholar 

  60. Fata JE, Leco KJ, Voura EB, Yu HY, Waterhouse P, Murphy G, et al. Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest 2001;108(6):831–41.

    Article  PubMed  CAS  Google Scholar 

  61. Alexander CM, Howard EW, Bissell MJ, Werb Z. Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J Cell Biol 1996;135 6(Pt 1):1669–77.

    Article  PubMed  CAS  Google Scholar 

  62. Boussadia O, Kutsch S, Hierholzer A, Delmas V, Kemler R. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 2002;115(1–2):53–62.

    Article  PubMed  CAS  Google Scholar 

  63. Faraldo MM, Deugnier MA, Lukashev M, Thiery JP, Glukhova MA. Perturbation of beta1-integrin function alters the development of murine mammary gland. EMBO J 1998;17(8):2139–47.

    Article  PubMed  CAS  Google Scholar 

  64. Nemade RV, Bierie B, Nozawa M, Bry C, Smith GH, Vasioukhin V, et al. Biogenesis and function of mouse mammary epithelium depends on the presence of functional alpha-catenin. Mech Dev 2004;121(1):91–9.

    Article  PubMed  CAS  Google Scholar 

  65. Willert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev 2006;20(11):1394–404.

    Article  PubMed  CAS  Google Scholar 

  66. Meniel V, Clarke AR. Wnt-cadherin connections in normal and neoplastic mammary epithelium. J Mammary Gland Biol Neoplasia 2003;8(4):435–47.

    Article  PubMed  Google Scholar 

  67. Polakis P. Wnt signaling and cancer. Genes Dev 2000;14(15):1837–51.

    PubMed  CAS  Google Scholar 

  68. Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze’ev A, Thiery JP, et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005;132(2):267–77.

    Article  PubMed  CAS  Google Scholar 

  69. Lacher MD, Siegenthaler A, Jager R, Yan X, Hett S, Xuan L, et al. Role of DDC-4/sFRP-4, a secreted frizzled-related protein, at the onset of apoptosis in mammary involution. Cell Death Differ 2003;10(5):528–38.

    Article  PubMed  CAS  Google Scholar 

  70. Iavnilovitch E, Eilon T, Groner B, Barash I. Expression of a carboxy terminally truncated Stat5 with no transactivation domain in the mammary glands of transgenic mice inhibits cell proliferation during pregnancy, delays onset of milk secretion, and induces apoptosis upon involution. Mol Reprod Dev 2006;73(7):841–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J. E. Visvader and G. J. Lindeman are supported by the Victorian Breast Cancer Research Consortium and the National Health & Medical Research Council (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Visvader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutherland, K.D., Lindeman, G.J. & Visvader, J.E. The Molecular Culprits Underlying Precocious Mammary Gland Involution. J Mammary Gland Biol Neoplasia 12, 15–23 (2007). https://doi.org/10.1007/s10911-007-9034-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-007-9034-8

Keywords

Navigation