Skip to main content

Advertisement

Log in

Stromal Fibroblasts and the Immune Microenvironment: Partners in Mammary Gland Biology and Pathology?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The microenvironment of a tumor has emerged recently as a critical contributor to the development of cancer. Within this environment, fibroblasts and immune cells are the cell lineages that seem to be active mediators of tumour development. The activated fibroblasts that are also present during wound healing and chronic inflammation have been studied extensively. Their activation leads to altered gene expression profiles that markedly increase growth factor and cytokine secretion, leading to major alterations in the immune cell microenvironment. To better understand normal tissue development, wound healing and the chronic inflammation that leads to cancer, we review here information available on the role of fibroblasts and immune cells in normal breast development and in cancer. We also discuss the immunogenicity of breast cancer compared to other cancers and the contribution of the immune microenvironment to the initiation, progression and metastasis of tumors. Also reviewed is the limited knowledge on the role of immune cells and fibroblasts in normal development and whether the risk of cancer increases when their control is not tightly regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

BPH:

Benign prostatic hyperplasia

CAF:

Cancer associated fibroblast

CCL2:

Monocyte chemoattractant protein 1

COPD:

Chronic obstructive pulmonary disease

CSF-1:

Colony stimulating factor 1

CTLA-4:

Cytotoxic T lymphocyte antigen 4

CXCL12:

Stromal derived factor 1

DC:

Dendritic cell

DCIS:

Ductal carcinoma in-situ

DTR:

Diphtheria toxin receptor

ECM:

Extracellular matrix

EFG:

Epidermal growth factor

FAP:

Fibroblast activated protein

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

GH:

Growth hormone

IDC:

Invasive ductal carcinoma

IFN-γ:

Interferon gamma

IFN- β:

Interferon beta

mAb:

Monoclonal antibody

MDSC:

Myeloid Derived suppressor cell

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

NF:

Normal fibroblast

NK:

Natural killer cell

pDC:

Plasmacytoid dendritic cell

RA:

Rheumatoid arthritis

TAM:

Tumor associated macrophage

TEB:

Terminal end bud

TGF-β:

Transforming growth factor beta

TIMP:

Tissue inhibitor of matrix metalloproteinase

TNF-α:

Tumor necrosis factor alpha

Treg:

Regulatory T cell

VEGF:

Vascular endothelial growth factor

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  3. Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135(6):995–1003. doi:10.1242/dev.005439.

    Article  CAS  PubMed  Google Scholar 

  4. Hinck L, Silberstein GB. Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res. 2005;7(6):245–51. doi:10.1186/bcr1331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000;5(2):227–41.

    Article  CAS  PubMed  Google Scholar 

  6. Balogh GA, Heulings R, Mailo DA, Russo PA, Sheriff F, Russo IH, et al. Genomic signature induced by pregnancy in the human breast. Int J Oncol. 2006;28(2):399–410.

    CAS  PubMed  Google Scholar 

  7. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A. 1997;94(7):3425–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. De Boeck A, Hendrix A, Maynard D, Van Bockstal M, Daniels A, Pauwels P, et al. Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics. 2013;13(2):379–88. doi:10.1002/pmic.201200179.

    Article  PubMed  CAS  Google Scholar 

  9. Postlethwaite AE, Shigemitsu H, Kanangat S. Cellular origins of fibroblasts: possible implications for organ fibrosis in systemic sclerosis. Curr Opin Rheumatol. 2004;16(6):733–8.

    Article  PubMed  Google Scholar 

  10. Fries KM, Blieden T, Looney RJ, Sempowski GD, Silvera MR, Willis RA, et al. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol. 1994;72(3):283–92.

    Article  CAS  PubMed  Google Scholar 

  11. Berry DP, Harding KG, Stanton MR, Jasani B, Ehrlich HP. Human wound contraction: collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg. 1998;102(1):124–31. discussion 32-4.

    Article  CAS  PubMed  Google Scholar 

  12. Lu P, Ewald AJ, Martin GR, Werb Z. Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol. 2008;321(1):77–87. doi:10.1016/j.ydbio.2008.06.005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development. 1999;126(2):335–44.

    CAS  PubMed  Google Scholar 

  14. Gallego MI, Binart N, Robinson GW, Okagaki R, Coschigano KT, Perry J, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol. 2001;229(1):163–75. doi:10.1006/dbio.2000.9961.

    Article  CAS  PubMed  Google Scholar 

  15. Jackson D, Bresnick J, Rosewell I, Crafton T, Poulsom R, Stamp G, et al. Fibroblast growth factor receptor signalling has a role in lobuloalveolar development of the mammary gland. J Cell Sci. 1997;110(Pt 11):1261–8.

    CAS  PubMed  Google Scholar 

  16. Schedin P, Mitrenga T, McDaniel S, Kaeck M. Mammary ECM composition and function are altered by reproductive state. Mol Carcinog. 2004;41(4):207–20. doi:10.1002/mc.20058.

    Article  CAS  PubMed  Google Scholar 

  17. Talhouk RS, Bissell MJ, Werb Z. Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol. 1992;118(5):1271–82.

    Article  CAS  PubMed  Google Scholar 

  18. De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol. 1999;155(6):1985–92. doi:10.1016/S0002-9440(10)65517-4.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kuper CF, Schuurman H, Bos-Kuijpers M, Bloksma N. Predictive testing for pathogenic autoimmunity: the morphological approach. Toxicol Lett. 2000;112–113:433–42.

    Article  PubMed  Google Scholar 

  20. van Kempen LC, de Visser KE, Coussens LM. Inflammation, proteases and cancer. Eur J Cancer. 2006;42(6):728–34. doi:10.1016/j.ejca.2006.01.004.

    Article  PubMed  CAS  Google Scholar 

  21. Sapi E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med. 2004;229(1):1–11.

    CAS  Google Scholar 

  22. Stanley ER, Berg KL, Einstein DB, Lee PS, Pixley FJ, Wang Y, et al. Biology and action of colony–stimulating factor-1. Mol Reprod Dev. 1997;46(1):4–10. doi:10.1002/(SICI)1098-2795(199701)46:1<4::AID-MRD2>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  23. Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4(4):155–64.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235(12):3222–9. doi:10.1002/dvdy.20972.

    Article  CAS  PubMed  Google Scholar 

  25. Gyorki DE, Asselin-Labat ML, van Rooijen N, Lindeman GJ, Visvader JE. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 2009;11(4):R62. doi:10.1186/bcr2353.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chua AC, Hodson LJ, Moldenhauer LM, Robertson SA, Ingman WV. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development. 2010;137(24):4229–38. doi:10.1242/dev.059261.

    Article  CAS  PubMed  Google Scholar 

  27. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75. doi:10.1242/dev.071696.

    Article  PubMed  CAS  Google Scholar 

  28. Lilla JN, Werb Z. Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol. 2010;337(1):124–33. doi:10.1016/j.ydbio.2009.10.021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wolters PJ, Pham CT, Muilenburg DJ, Ley TJ, Caughey GH. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Biol Chem. 2001;276(21):18551–6. doi:10.1074/jbc.M100223200.

    Article  CAS  PubMed  Google Scholar 

  30. Lilla JN, Joshi RV, Craik CS, Werb Z. Active plasma kallikrein localizes to mast cells and regulates epithelial cell apoptosis, adipocyte differentiation, and stromal remodeling during mammary gland involution. J Biol Chem. 2009;284(20):13792–803. doi:10.1074/jbc.M900508200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J Exp Med. 1997;185(4):785–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Colbert DC, McGarry MP, O'Neill K, Lee NA, Lee JJ. Decreased size and survival of weanling mice in litters of IL-5-/ -mice are a consequence of the IL-5 deficiency in nursing dams. Contemp Top Lab Anim Sci/J Am Assoc Lab AnimSci. 2005;44(3):53–5.

    CAS  Google Scholar 

  33. Weisz-Carrington P, Roux ME, Lamm ME. Plasma cells and epithelial immunoglobulins in the mouse mammary gland during pregnancy and lactation. J Immunol. 1977;119(4):1306–7.

    CAS  PubMed  Google Scholar 

  34. Degnim AC, Brahmbhatt RD, Radisky DC, Hoskin TL, Stallings-Mann M, Laudenschlager M, et al. Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Res Treat. 2014;144(3):539–49. doi:10.1007/s10549-014-2896-8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004;6(2):R75–91. doi:10.1186/bcr753.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Stein T, Salomonis N, Gusterson BA. Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia. 2007;12(1):25–35. doi:10.1007/s10911-007-9035-7.

    Article  PubMed  Google Scholar 

  37. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6(2):R92–109. doi:10.1186/bcr754.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Monks J, Rosner D, Geske FJ, Lehman L, Hanson L, Neville MC, et al. Epithelial cells as phagocytes: apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Cell Death Differ. 2005;12(2):107–14. doi:10.1038/sj.cdd.4401517.

    Article  CAS  PubMed  Google Scholar 

  39. Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harbor perspectives in biology. 2011;3(3). doi:10.1101/cshperspect.a003285.

  40. O'Brien J, Schedin P. Macrophages in breast cancer: do involution macrophages account for the poor prognosis of pregnancy-associated breast cancer? J Mammary Gland Biol Neoplasia. 2009;14(2):145–57. doi:10.1007/s10911-009-9118-8.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Surowiak P, Suchocki S, Gyorffy B, Gansukh T, Wojnar A, Maciejczyk A, et al. Stromal myofibroblasts in breast cancer: relations between their occurrence, tumor grade and expression of some tumour markers. Folia Histochem Cytobiol/ Pol Acad Sci, Pol Histochem Cytochem Soc. 2006;44(2):111–6.

    Google Scholar 

  42. Lisanti MP, Martinez Outschoorn UE, Sotgia F. Oncogenes induce the cancer-associated fibroblast phenotype: Metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery. Cell Cycle. 2013;12(17):2723–32. doi:10.4161/cc.25695.

    Article  CAS  PubMed  Google Scholar 

  43. Taddei ML, Giannoni E, Raugei G, Scacco S, Sardanelli AM, Papa S, et al. Mitochondrial Oxidative Stress due to Complex I Dysfunction Promotes Fibroblast Activation and Melanoma Cell Invasiveness. J Signal Transduct. 2012;2012:684592. doi:10.1155/2012/684592.

    PubMed Central  PubMed  Google Scholar 

  44. Ronnov-Jessen L, Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Investig: J Tech Methods and Pathol. 1993;68(6):696–707.

    CAS  Google Scholar 

  45. Whitaker-Menezes D, Martinez-Outschoorn UE, Lin Z, Ertel A, Flomenberg N, Witkiewicz AK, et al. Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle. 2011;10(11):1772–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001;22(4):199–204.

    Article  CAS  PubMed  Google Scholar 

  47. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401. doi:10.1038/nrc1877.

    Article  CAS  PubMed  Google Scholar 

  48. Silzle T, Kreutz M, Dobler MA, Brockhoff G, Knuechel R, Kunz-Schughart LA. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol. 2003;33(5):1311–20. doi:10.1002/eji.200323057.

    Article  CAS  PubMed  Google Scholar 

  49. Cambien B, Pomeranz M, Millet MA, Rossi B, Schmid-Alliana A. Signal transduction involved in MCP-1-mediated monocytic transendothelial migration. Blood. 2001;97(2):359–66.

    Article  CAS  PubMed  Google Scholar 

  50. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404(6776):407–11. doi:10.1038/35006097.

    Article  CAS  PubMed  Google Scholar 

  51. Baglole CJ, Maggirwar SB, Gasiewicz TA, Thatcher TH, Phipps RP, Sime PJ. The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-kappaB family member RelB. J Biol Chem. 2008;283(43):28944–57. doi:10.1074/jbc.M800685200.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Flavell SJ, Hou TZ, Lax S, Filer AD, Salmon M, Buckley CD. Fibroblasts as novel therapeutic targets in chronic inflammation. Br J Pharmacol. 2008;153 Suppl 1:S241–6. doi:10.1038/sj.bjp.0707487.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Martey CA, Pollock SJ, Turner CK, O'Reilly KM, Baglole CJ, Phipps RP, et al. Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol. 2004;287(5):L981–91. doi:10.1152/ajplung.00239.2003.

    Article  CAS  PubMed  Google Scholar 

  54. Smith GM, Biggs J, Norris B, Anderson-Stewart P, Ward R. Detection of a soluble form of the leukocyte surface antigen CD48 in plasma and its elevation in patients with lymphoid leukemias and arthritis. J Clin Immunol. 1997;17(6):502–9.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Wu L, Qu JM, Bai CX, Merrilees MJ, Black PN. Pro-inflammatory phenotype of COPD fibroblasts not compatible with repair in COPD lung. J Cell Mol Med. 2012;16(7):1522–32. doi:10.1111/j.1582-4934.2011.01492.x.

    Article  CAS  PubMed  Google Scholar 

  56. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology. 2006;45(6):669–75. doi:10.1093/rheumatology/kel065.

    Article  CAS  PubMed  Google Scholar 

  57. Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res. 1991;26(3 Pt 2):230–42.

    Article  CAS  PubMed  Google Scholar 

  58. Kook SH, Jang YS, Lee JC. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-alpha-mediated activation of CD4+ T cells. J Cell Biochem. 2011;112(10):2891–901. doi:10.1002/jcb.23205.

    Article  CAS  PubMed  Google Scholar 

  59. Begley L, Monteleon C, Shah RB, Macdonald JW, Macoska JA. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell. 2005;4(6):291–8. doi:10.1111/j.1474-9726.2005.00173.x.

    Article  CAS  PubMed  Google Scholar 

  60. Begley LA, Kasina S, MacDonald J, Macoska JA. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine. 2008;43(2):194–9. doi:10.1016/j.cyto.2008.05.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci: J Virtual Libr. 1997;2:d12–26.

    CAS  Google Scholar 

  62. Takata H, Tomiyama H, Fujiwara M, Kobayashi N, Takiguchi M. Cutting edge: expression of chemokine receptor CXCR1 on human effector CD8+ T cells. J Immunol. 2004;173(4):2231–5.

    Article  CAS  PubMed  Google Scholar 

  63. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70. doi:10.1126/science.1203486.

    Article  CAS  PubMed  Google Scholar 

  64. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71. doi:10.1146/annurev-immunol-031210-101324.

    Article  CAS  PubMed  Google Scholar 

  65. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99. doi:10.1038/nm1087.

    Article  CAS  PubMed  Google Scholar 

  66. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60. doi:10.1146/annurev.immunol.22.012703.104803.

    Article  CAS  PubMed  Google Scholar 

  67. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;90:1–50. doi:10.1016/S0065-2776(06)90001-7.

    Article  CAS  PubMed  Google Scholar 

  68. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7(3):211–7. doi:10.1016/j.ccr.2005.02.013.

    Article  CAS  PubMed  Google Scholar 

  69. Lu H, Hoshiba T, Kawazoe N, Koda I, Song M, Chen G. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials. 2011;32(36):9658–66. doi:10.1016/j.biomaterials.2011.08.091.

    Article  CAS  PubMed  Google Scholar 

  70. Chapman JR, Webster AC, Wong G. Cancer in the transplant recipient. Cold Spring Harbor perspectives in medicine. 2013;3(7). doi:10.1101/cshperspect.a015677.

  71. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67. doi:10.1016/S0140-6736(07)61050-2.

    Article  PubMed  Google Scholar 

  72. Aaltomaa S, Lipponen P, Eskelinen M, Kosma VM, Marin S, Alhava E, et al. Lymphocyte infiltrates as a prognostic variable in female breast cancer. Eur J Cancer. 1992;28A(4–5):859–64.

    Article  CAS  PubMed  Google Scholar 

  73. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol: Off J Am Soc Clin Oncol. 2013;31(7):860–7. doi:10.1200/JCO.2011.41.0902.

    Article  CAS  Google Scholar 

  74. Hussein MR, Hassan HI. Analysis of the mononuclear inflammatory cell infiltrate in the normal breast, benign proliferative breast disease, in situ and infiltrating ductal breast carcinomas: preliminary observations. J Clin Pathol. 2006;59(9):972–7. doi:10.1136/jcp.2005.031252.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Erez N, Glanz S, Raz Y, Avivi C, Barshack I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem Biophys Res Commun. 2013;437(3):397–402. doi:10.1016/j.bbrc.2013.06.089.

    Article  CAS  PubMed  Google Scholar 

  76. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1(1):54–67. doi:10.1158/2159-8274.CD-10-0028.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Brennan DJ, Gallagher WM. Prognostic ability of a panel of immunohistochemistry markers - retailoring of an 'old solution'. Breast Cancer Res. 2008;10(1):102. doi:10.1186/bcr1854.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Paulsson J, Sjoblom T, Micke P, Ponten F, Landberg G, Heldin CH, et al. Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol. 2009;175(1):334–41. doi:10.2353/ajpath.2009.081030.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2005;2(9):e284. doi:10.1371/journal.pmed.0020284.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Mukhtar RA, Nseyo O, Campbell MJ, Esserman LJ. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn. 2011;11(1):91–100. doi:10.1586/erm.10.97.

    Article  CAS  PubMed  Google Scholar 

  81. Schmieder A, Michel J, Schonhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol. 2012;22(4):289–97. doi:10.1016/j.semcancer.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  82. Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett. 2009;123(2):97–102. doi:10.1016/j.imlet.2009.02.011.

    Article  CAS  PubMed  Google Scholar 

  83. Dong C, Martinez GJ. T cell Subsets. In: Centre UoTHS, editor. Texas: Nature Publishing Group; 2010.

  84. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9. doi:10.1038/nm1093.

    Article  CAS  PubMed  Google Scholar 

  85. Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54(8):721–8. doi:10.1007/s00262-004-0653-2.

    Article  CAS  PubMed  Google Scholar 

  86. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10(22):7466–74. doi:10.1158/1078-0432.CCR-04-0684.

    Article  CAS  Google Scholar 

  87. Slaney CY, Rautela J, Parker BS. The emerging role of immunosurveillance in dictating metastatic spread in breast cancer. Cancer Res. 2013;73(19):5852–7.

    Article  CAS  PubMed  Google Scholar 

  88. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–31. doi:10.1038/nm.2830.

    Article  CAS  PubMed  Google Scholar 

  89. Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet. 2012;8(9):e1002926. doi:10.1371/journal.pgen.1002926.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(15):1949–55. doi:10.1200/JCO.2010.30.5037.

    Article  Google Scholar 

  91. Kim ST, Jeong H, Woo OH, Seo JH, Kim A, Lee ES, et al. Tumor-infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol. 2013;36(3):224–31. doi:10.1097/COC.0b013e3182467d90.

    Article  CAS  PubMed  Google Scholar 

  92. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R, Anderson RL, et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 2009;69(14):5996–6004. doi:10.1158/0008-5472.CAN-08-4619.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A. 2010;107(4):1547–52. doi:10.1073/pnas.0908801107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609–22. doi:10.1172/JCI45816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Swierczak A, Cook A, Lenzo J, Restall C, Doherty J, Anderson R et al. The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunol Res. e-print online April 29 2014.

  96. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001;193(6):727–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. Cancer Cell. 2010;17(2):135–47. doi:10.1016/j.ccr.2009.12.041.

    Article  CAS  PubMed  Google Scholar 

  98. Celis JE, Moreira JM, Cabezon T, Gromov P, Friis E, Rank F, et al. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics. 2005;4(4):492–522. doi:10.1074/mcp.M500030-MCP200.

    Article  CAS  PubMed  Google Scholar 

  99. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71(7):2455–65. doi:10.1158/0008-5472.CAN-10-3323.

    Article  CAS  PubMed  Google Scholar 

  100. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):518–27. doi:10.1038/nm1764.

    Article  CAS  PubMed  Google Scholar 

  101. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA, et al. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest. 2011;121(2):784–99. doi:10.1172/JCI43757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, Stephens RM, et al. A stromal gene signature associated with inflammatory breast cancer. Int J Cancer J Int Du Cancer. 2008;122(6):1324–32. doi:10.1002/ijc.23237.

    Article  CAS  Google Scholar 

  103. Stover DG, Bierie B, Moses HL. A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem. 2007;101(4):851–61. doi:10.1002/jcb.21149.

    Article  CAS  PubMed  Google Scholar 

  104. Balsamo M, Scordamaglia F, Pietra G, Manzini C, Cantoni C, Boitano M, et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci U S A. 2009;106(49):20847–52. doi:10.1073/pnas.0906481106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2013. doi:10.1038/onc.2013.191.

  106. Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB. T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. Cancer Microenviron: Off J Int Cancer Microenviron Soc. 2010;3(1):29–47. doi:10.1007/s12307-010-0044-5.

    Article  CAS  Google Scholar 

  107. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One. 2009;4(11):e7965. doi:10.1371/journal.pone.0007965.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517. doi:10.1146/annurev.immunol.021908.132710.

    Article  CAS  PubMed  Google Scholar 

  109. Benito-Miguel M, Garcia-Carmona Y, Balsa A. Perez de Ayala C, Cobo-Ibanez T, Martin-Mola E et al. A dual action of rheumatoid arthritis synovial fibroblast IL-15 expression on the equilibrium between CD4 + CD25+ regulatory T cells and CD4 + CD25- responder T cells. J Immunol. 2009;183(12):8268–79.

    Article  CAS  PubMed  Google Scholar 

  110. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood. 2003;101(12):4878–86. doi:10.1182/blood-2002-07-1956.

    Article  CAS  PubMed  Google Scholar 

  111. Wada J, Suzuki H, Fuchino R, Yamasaki A, Nagai S, Yanai K, et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res. 2009;29(3):881–8.

    CAS  PubMed  Google Scholar 

  112. Ahmadzadeh M, Rosenberg SA. TGF-beta 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol. 2005;174(9):5215–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Arbeit JM, Munger K, Howley PM, Hanahan D. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol. 1994;68(7):4358–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Coussens LM, Hanahan D, Arbeit JM. Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol. 1996;149(6):1899–917.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15(2):91–102. doi:10.1016/j.ccr.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  116. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15(2):103–13. doi:10.1016/j.ccr.2009.01.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Korc M. Pancreatic cancer-associated stroma production. Am J Surg. 2007;194(4 Suppl):S84–6. doi:10.1016/j.amjsurg.2007.05.004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007;6(4):1186–97. doi:10.1158/1535-7163.MCT-06-0686.

    Article  CAS  PubMed  Google Scholar 

  119. Walker RA. The complexities of breast cancer desmoplasia. Breast Cancer Res. 2001;3(3):143–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257–72. doi:10.1016/j.ccr.2011.01.020.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1(6):510–4. doi:10.1038/82763.

    Article  CAS  PubMed  Google Scholar 

  122. Peng Q, Zhao L, Hou Y, Sun Y, Wang L, Luo H, et al. Biological characteristics and genetic heterogeneity between carcinoma-associated fibroblasts and their paired normal fibroblasts in human breast cancer. PLoS One. 2013;8(4):e60321. doi:10.1371/journal.pone.0060321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  124. van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 1999;190(3):355–66.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Van Ginderachter JA, Liu Y, Geldhof AB, Brijs L, Thielemans K, De Baetselier P, et al. B7-1, IFN gamma and anti-CTLA-4 co-operate to prevent T-cell tolerization during immunotherapy against a murine T-lymphoma. Int J Cancer J Int Du Cancer. 2000;87(4):539–47.

    Article  Google Scholar 

  126. Hurwitz AA, Yu TF, Leach DR, Allison JP. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci U S A. 1998;95(17):10067–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A. 1997;94(15):8099–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013;368(14):1365–6. doi:10.1056/NEJMc1302338.

    Article  CAS  PubMed  Google Scholar 

  130. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12. doi:10.1016/j.coi.2011.12.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. doi:10.1056/NEJMoa1305133.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang P, Su DM, Liang M, Fu J. Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol. 2008;45(5):1470–6. doi:10.1016/j.molimm.2007.08.013.

    Article  CAS  PubMed  Google Scholar 

  133. Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X. Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med. 2014;12:36. doi:10.1186/1479-5876-12-36.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2002;20(3):719–26.

    Article  CAS  Google Scholar 

  135. Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res. 2000;60(13):3384–8.

    CAS  PubMed  Google Scholar 

  136. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, et al. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40. doi:10.1016/j.ccr.2009.03.020.

    Article  CAS  PubMed  Google Scholar 

  137. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27. doi:10.1016/j.ccr.2004.06.022.

    Article  CAS  PubMed  Google Scholar 

  138. Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006;94(2):259–67. doi:10.1038/sj.bjc.6602930.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2010;28(1):105–13. doi:10.1200/JCO.2009.23.7370.

    Article  CAS  Google Scholar 

  140. Kelly T, Huang Y, Simms AE, Mazur A. Fibroblast activation protein-alpha: a key modulator of the microenvironment in multiple pathologies. Int Rev Cell Mol Biol. 2012;297:83–116. doi:10.1016/B978-0-12-394308-8.00003-0.

    Article  CAS  PubMed  Google Scholar 

  141. Rettig WJ, Garin-Chesa P, Beresford HR, Oettgen HF, Melamed MR, Old LJ. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci U S A. 1988;85(9):3110–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;87(18):7235–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, McKee PA. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood. 2006;107(4):1397–404. doi:10.1182/blood-2005-08-3452.

    Article  CAS  PubMed  Google Scholar 

  144. Loeffler M, Kruger JA, Niethammer AG, Reisfeld RA. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest. 2006;116(7):1955–62. doi:10.1172/JCI26532.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Ostermann E, Garin-Chesa P, Heider KH, Kalat M, Lamche H, Puri C, et al. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(14):4584–92. doi:10.1158/1078-0432.CCR-07-5211.

    Article  CAS  Google Scholar 

  146. Santos AM, Jung J, Aziz N, Kissil JL, Pure E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest. 2009;119(12):3613–25. doi:10.1172/JCI38988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science. 2010;330(6005):827–30. doi:10.1126/science.1195300.

    Article  CAS  PubMed  Google Scholar 

  148. Wen Y, Wang CT, Ma TT, Li ZY, Zhou LN, Mu B, et al. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101(11):2325–32. doi:10.1111/j.1349-7006.2010.01695.x.

    Article  CAS  PubMed  Google Scholar 

  149. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol: Off J Am Soc Clin Oncol. 1994;12(6):1193–203.

    CAS  Google Scholar 

  150. Hofheinz RD. al-Batran SE, Hartmann F, Hartung G, Jager D, Renner C et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  151. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2003;9(5):1639–47.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Nicole Haynes for critical discussions and assistance with this review. We would also like to thank the National Breast Cancer Foundation (NBCF) of Australia for supporting Robin Anderson and Kara Britt with NBCF fellowships. Ashleigh Unsworth is supported by an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kara Britt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unsworth, A., Anderson, R. & Britt, K. Stromal Fibroblasts and the Immune Microenvironment: Partners in Mammary Gland Biology and Pathology?. J Mammary Gland Biol Neoplasia 19, 169–182 (2014). https://doi.org/10.1007/s10911-014-9326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-014-9326-8

Keywords

Navigation