Skip to main content
Log in

A \(C^0\) Linear Finite Element Method for Biharmonic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a \(C^0\) linear finite element method for biharmonic equations is constructed and analyzed. In our construction, the popular post-processing gradient recovery operators are used to calculate approximately the second order partial derivatives of a \(C^0\) linear finite element function which do not exist in traditional meaning. The proposed scheme is straightforward and simple. More importantly, it is shown that the numerical solution of the proposed method converges to the exact one with optimal orders both under \(L^2\) and discrete \(H^2\) norms, while the recovered numerical gradient converges to the exact one with a superconvergence order. Some novel properties of gradient recovery operators are discovered in the analysis of our method. In several numerical experiments, our theoretical findings are verified and a comparison of the proposed method with the nonconforming Morley element and \(C^0\) interior penalty method is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adini, A., Clough, R.W.: Analysis of plate bending by the finite element method, NSF report G. 7337 (1961)

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000)

    Book  MATH  Google Scholar 

  3. Babuska, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Oxford University Press, London (2001)

    MATH  Google Scholar 

  4. Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. comp. 44, 283–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part I: Grid with superconvergence. SIAM J. Numer. Anal. 41, 2294–2312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baker, G.A.: Fintie element methods for elliptic equations using nonconforming elements. Math. Comp. 31, 45–59 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part II: general unstructured grids. SIAM J. Numer. Anal. 41, 2313–2332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S., Sung, L.: C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23, 83–118 (2005)

    Article  MATH  Google Scholar 

  9. Brenner, S., Scott, L.R.: Mathematical Theory of Finite element Methods, 3rd edn. Spriger-Verlag, New York (2008)

    Book  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, vol. 4. North-Holland, Amsterdam (1978)

    Google Scholar 

  11. COMSOL Multiphysics 3.5a User’s Guide, p. 471 (2008)

  12. Introduction to COMSOL Multiphysics Version 5.1, p. 46 (2015)

  13. Chatelin, Francoise: Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics. Academic Press Inc., New York (1983)

    MATH  Google Scholar 

  14. Chen, H., Guo, H., Zhang, Z., Zou, Q.: A \(C^0\) Linear Finite Element Method For Two Fourth-Order Eigenvalue Problems IMA. J. Numer. Anal. (2016). doi:10.1093/imanum/drw051

  15. Guo, H., Zhang, Z., Zhao, R., Zou, Q.: Polynomial preserving recovery on boundary. J. Comput. Appl. Math. 307, 119–133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, H., Yang, X.: Polynomial preserving recovery for high frequency wave propagation. J. Sci. Comput. 71, 594–614 (2017)

    Article  MathSciNet  Google Scholar 

  17. El-Gamel, M., Sameeh, M.: An efficient technique for finding the eigenvalues of fourth-order Sturm–Liouville problems. Appl. Math. 3, 920–925 (2012)

    Article  Google Scholar 

  18. Lamichhane, B.: A stabilized mixed finite element method for the biharmonic equation based on biorthogonal systems. J. Comput. Appl. Math. 235, 5188–5197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lamichhane, B.: A finite element method for a biharmonic equation based on gradient recovery operators. BIT Numer. Math. 54, 469–484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, H., Nistor, V.: LNG_FEM: graded meshes on domains of polygonal structures. Rec. Adv. Sci. Comput. Appl. 586, 239–246 (2013)

    MATH  Google Scholar 

  21. Morley, L.: The triangular equilibrium problem in the solution of plate bending problems. Aero. Quart. 19, 149C–169 (1968)

    Google Scholar 

  22. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42–4, 1780–1800 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naga, A., Zhang, Z.: The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discret. Contin. Dyn. Syst.-Ser. B 5–3, 769–798 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Naga, A., Zhang, Z.: Function value recovery and its application in eigenvalue problems. SIAM J. Numer. Anal. 50, 272–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niceno, B.: EasyMesh Version 1.4: A two-dimensional quality mesh generator. http://www-dinma.univ.trieste.it/nirftc/research/easymesh

  26. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comp. 73, 1139–1152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, S., Zhang, Z.: Invalidity of decoupling a biharmonic equation to two Poisson equations on non-convex polygons. Int. J. Numer. Anal. Model. 5, 73–76 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Zhang, Z.: Recovery Techniques in Finite Element Methods. In: Tang, T., Xu, J. (eds.) Adaptive Computations: Theory and Algorithms. Mathematics Monograph Series 6, pp. 333–412. Science Publisher, London (2007)

    Google Scholar 

  30. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26–4, 1192–1213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery and a posteriori error estimates part 1: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Zou.

Additional information

H. Guo: The research of this author was supported in part by the US National Science Foundation through Grant DMS-1419040. Z. Zhang: The research of this author was supported in part by the following Grants: NSFC 11471031, NSFC 91430216, NASF U1530401, and NSF DMS-1419040. Q. Zou: The research of this author was supported in part by the following Grants: the special project High performance computing of National Key Research and Development Program 2016YFB0200604, NSFC 11571384, Guangdong Provincial NSF 2014A030313179, the Fundamental Research Funds for the Central Universities 16lgjc80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Zhang, Z. & Zou, Q. A \(C^0\) Linear Finite Element Method for Biharmonic Problems. J Sci Comput 74, 1397–1422 (2018). https://doi.org/10.1007/s10915-017-0501-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0501-0

Keywords

Mathematics Subject Classification

Navigation