Skip to main content
Log in

An Equilibrated Fluxes Approach to the Certified Descent Algorithm for Shape Optimization Using Conforming Finite Element and Discontinuous Galerkin Discretizations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The certified descent algorithm (CDA) is a gradient-based method for shape optimization which certifies that the direction computed using the shape gradient is a genuine descent direction for the objective functional under analysis. It relies on the computation of an upper bound of the error introduced by the finite element approximation of the shape gradient. In this paper, we present a goal-oriented error estimator which depends solely on local quantities and is fully-computable. By means of the equilibrated fluxes approach, we construct a unified strategy valid for both conforming finite element approximations and discontinuous Galerkin discretizations. The new variant of the CDA is tested on the inverse identification problem of electrical impedance tomography: both its ability to identify a genuine descent direction at each iteration and its reliable stopping criterion are confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We refer to [39] for a detailed comparison of the volumetric and surface expressions of the shape gradient for elliptic state problems. In particular, in this work the authors prove that within the framework of finite element discretizations, a better numerical accuracy is achieved when using the volumetric formulation of the shape gradient. Similar results for the case of interface problems are available in [53].

References

  1. Afraites, L., Dambrine, M., Kateb, D.: On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47(3), 1556–1590 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45(4), 1777–1798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. A Wiley-Interscience publication. Wiley, Hoboken (2000)

    Book  MATH  Google Scholar 

  4. Ainsworth, M., Rankin, R.: Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Meth. Eng. 89(13), 1605–1634 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alauzet, F., Mohammadi, B., Pironneau, O.: Mesh adaptivity and optimal shape design for aerospace. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, Springer Optimization and Its Applications, pp. 323–337. Springer, New York (2012)

    Google Scholar 

  6. Allaire, G.: Conception Optimale de Structures, Mathématiques & Applications, vol. 58. Springer, Berlin (2007)

    MATH  Google Scholar 

  7. Allaire, G., Pantz, O.: Structural optimization with FreeFem++. Struct. Multidiscip. Optim. 32(3), 173–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ammari, H., Bossy, E., Garnier, J., Seppecher, L.: Acousto-electromagnetic tomography. SIAM J. Appl. Math. 72(5), 1592–1617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Azegami, H., Kaizu, S., Shimoda, M., Katamine, E.: Irregularity of shape optimization problems and an improvement technique. In: Hernandez, S., Brebbia, C. (eds.) 5th International Conference on Computer Aided Optimum Design of Structures (OPTI 97), pp. 309–326. Computational Mechanics Publications Ltd, Rome, Italy (1997)

  10. Banichuk, N.V., Barthold, F.J., Falk, A., Stein, E.: Mesh refinement for shape optimization. Struct. Optim. 9, 46–51 (1995)

    Article  MATH  Google Scholar 

  11. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  12. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18(6), R99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Braess, D., Fraunholz, T., Hoppe, R.H.W.: An equilibrated a posteriori error estimator for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 52(4), 2121–2136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Calderón, A.: On an inverse boundary value problem. In: Seminar on Numerical Analysis and its Applications to Continuum Physics, pp. 65–73. Soc. Brasileira de Matemática, Rio de Janeiro (1980). Reprinted at Comput. Appl. Math. 25(2–3), 133–138 (2006)

  17. Carpio, A., Rapún, M.L.: Hybrid topological derivative and gradient-based methods for electrical impedance tomography. Inverse Probl. 28(9), 095,010, 22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carstensen, C., Merdon, C.: Effective postprocessing for equilibration a posteriori error estimators. Numer. Math. 123(3), 425–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Céa, J.: Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. ESAIM Math. Model Numer. 20(3), 371–402 (1986)

    Article  MATH  Google Scholar 

  20. Cheney, M., Isaacson, D., Newell, J.: Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chung, E., Chan, T., Tai, X.C.: Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205(1), 357–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cochez-Dhondt, S., Nicaise, S.: Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equ. 24(5), 1236–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Codina, R., Baiges, J.: Weak imposition of essential boundary conditions in the finite element approximation of elliptic problems with non-matching meshes. Int. J. Numer. Methods Eng. 104(7), 624–654 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68(228), 1379–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Di Pietro, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  26. Dogǎn, G., Morin, P., Nochetto, R., Verani, M.: Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Eng. 196(3740), 3898–3914 (2007). Special Issue Honoring the 80th Birthday of Professor Ivo Babuka

    MathSciNet  MATH  Google Scholar 

  27. Eppler, K., Harbrecht, H.: A regularized Newton method in electrical impedance tomography using shape Hessian information. Control Cybern. 34(1), 203–225 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Ern, A., Nicaise, S., Vohralík, M.: An accurate \(\mathbf{H}(\text{ div })\) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Acad. Sci. I-Math. 345(12), 709–712 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ern, A., Stephansen, A., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Giacomini, M., Pantz, O., Trabelsi, K.: An a posteriori error estimator for shape optimization: application to EIT. J. Phys Conf. Ser. 657(1), 012,004 (2015)

    Article  Google Scholar 

  33. Giacomini, M., Pantz, O., Trabelsi, K.: Certified descent algorithm for shape optimization driven by fully-computable a posteriori error estimators. ESAIM: Control Optim. Calc. Var. 23(3), 977–1001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grätsch, T., Bathe, K.J.: Goal-oriented error estimation in the analysis of fluid flows with structural interactions. Comput. Methods Appl. Mech. 195, 5673–5684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Hintermüller, M., Laurain, A.: Electrical impedance tomography: from topology to shape. Control Cybern. 37(4), 913–933 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36(2), 235–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT 55(2), 459–485 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Holder, D.: Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  41. Jin, B., Maass, P.: An analysis of electrical impedance tomography with applications to Tikhonov regularization. ESAIM Control Optim Calc. Var. 18(4), 1027–1048 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kikuchi, N., Chung, K., Torigaki, T., Taylor, J.: Adaptive finite element methods for shape optimization of linearly elastic structures. Comput. Method Appl. Mech. 57, 67–89 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76(257), 43–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kohn, R., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Math. 40(6), 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  45. Laurain, A., Sturm, K.: Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Models Numer. Anal. 50(4), 1241–1267 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Morin, P., Nochetto, R., Pauletti, M., Verani, M.: Adaptive finite element method for shape optimization. ESAIM Control Optim Calc. Var. 18, 1122–1149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mozolevski, I., Prudhomme, S.: Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Comput. Methods Appl. Mech. 288, 127–145 (2015)

    Article  MathSciNet  Google Scholar 

  49. Nicaise, S., Witowski, K., Wohlmuth, B.: An a posteriori error estimator for the lam equation based on equilibrated fluxes. IMA J. Numer. Anal. 28(2), 331–353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36(1), 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  51. Nochetto, R., Siebert, K., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

    Chapter  Google Scholar 

  52. Oden, J., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41(5–6), 735–756 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  53. Paganini, A.: Approximate shape gradients for interface problems. In: New Trends in Shape Optimization, Int. Ser. Numer. Math., vol. 166. Birkhäuser/Springer, Cham, pp. 217–227 (2015)

  54. Pantz, O.: Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. I-Math. 341, 333–337 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Schleupen, A., Maute, K., Ramm, E.: Adaptive FE-procedures in shape optimization. Struct. Multidiscip. Optim. 19, 282–302 (2000)

    Article  Google Scholar 

  56. Schulz, V.H., Siebenborn, M., Welker, K.: Efficient PDE constrained shape optimization based on Steklov-Poincaré-type metrics. SIAM J. Optim. 26(4), 2800–2819 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005)

    Article  MATH  Google Scholar 

  58. Siebenborn, M., Welker, K.: Computational aspects of multigrid methods for optimization in shape spaces. arXiv:1611.05272 (2016)

  59. Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  60. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  61. Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput. 46, 1–40 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his sincere gratitude to Alexandre Ern for the useful advices and to Olivier Pantz for many fruitful discussions and for carefully reading the manuscript. The author wishes to thank the anonymous reviewers for their comments that helped to greatly improve the manuscript. Part of this work has been developed during a stay of the author at the Laboratoire J. A. Dieudonné at Université de Nice-Sophia Antipolis whose support is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Giacomini.

Additional information

M. Giacomini is member of the DeFI team at Inria Saclay Île-de-France.

Appendix A: Weak Imposition of the Essential Boundary Conditions

Appendix A: Weak Imposition of the Essential Boundary Conditions

We present a formal derivation of the variational formulation of an elliptic problem featuring weakly-imposed Dirichlet boundary conditions. The idea of this approach dates back to the classical paper by Nitsche [50] and has been extensively studied in recent years by several authors (cf. e.g. [23] and references therein). We recall that the solution of a boundary value problem may be interpreted as an optimization problem. Let us introduce the Lagrangian functional associated with the state problem (21) featuring Dirichlet boundary conditions:

$$\begin{aligned} \Lambda (w,\lambda ) = \frac{1}{2} \int _{\mathcal {D}}{\Big (k_\varOmega | \nabla w |^2 + |w|^2 \Big ) d\mathbf {x}} - \int _{\partial {\mathcal {D}}}{\lambda (w-U_D) ds} . \end{aligned}$$
(49)

The solution of the aforementioned boundary value problem is equivalent to the following min-max problem:

$$\begin{aligned} \min _{w \in H^1({\mathcal {D}})} \max _{\lambda \in H^{-\frac{1}{2}}({\mathcal {D}})} \Lambda (w,\lambda ) . \end{aligned}$$

The first-order optimality conditions for (49) read as

$$\begin{aligned} \left\{ \begin{aligned}&\int _{\mathcal {D}}{\Big ( k_\varOmega \nabla w \cdot \nabla \delta w + w \delta w \Big ) d\mathbf {x}} - \int _{\partial {\mathcal {D}}}{\lambda \delta w \ ds} = 0 ,\\&\int _{\partial {\mathcal {D}}}{(w-U_D) \delta \lambda \ ds} = 0 . \end{aligned} \right. \end{aligned}$$

From the second condition, we retrieve the Dirichlet boundary condition on \(\partial {\mathcal {D}}\). Integrating by parts the first condition and owing to the strong form of the problem, we obtain

$$\begin{aligned} \int _{\partial {\mathcal {D}}}{(k_\varOmega \nabla w \cdot \mathbf {n} - \lambda ) \delta w \ ds} = 0 . \end{aligned}$$

By plugging \(\lambda = k_\varOmega \nabla w \cdot \mathbf {n} \ \text {on} \ \partial {\mathcal {D}}\) into (49) we may now derive the following dual variational problem by seeking \(w \in H^1({\mathcal {D}})\) such that \(\forall \delta w \in H^1({\mathcal {D}})\)

$$\begin{aligned} \begin{aligned} \int _{\mathcal {D}}{\Big ( k_\varOmega \nabla w \cdot \nabla \delta w + w \delta w \Big ) d\mathbf {x}}&- \int _{\partial {\mathcal {D}}}{\Big ( k_\varOmega \nabla w \cdot \mathbf {n} \delta w + w k_\varOmega \nabla \delta w \cdot \mathbf {n} \Big ) ds} \\&\quad = - \int _{\partial {\mathcal {D}}}{U_D k_\varOmega \nabla \delta w \cdot \mathbf {n} \ ds} . \end{aligned} \end{aligned}$$
(50)

We remark that the bilinear form on the left-hand side of (50) is not coercive thus we cannot establish the well-posedness of this problem. To bypass this issue, we consider the following augmented Lagrangian functional and we construct the corresponding dual variational formulation for the problem under analysis:

$$\begin{aligned} \Upsilon (w,\lambda ,\gamma ) = \Lambda (w,\lambda ) + \frac{1}{2} \int _{\partial {\mathcal {D}}}{\gamma (w-U_D)^2 ds} . \end{aligned}$$

Following the same procedure used to derive (50), we seek \(w \in H^1({\mathcal {D}})\) such that \(\forall \delta w \in H^1({\mathcal {D}})\)

$$\begin{aligned} \begin{aligned} \int _{\mathcal {D}}{\Big ( k_\varOmega \nabla w \cdot \nabla \delta w + w \delta w \Big ) d\mathbf {x}} -&\int _{\partial {\mathcal {D}}}{\Big ( k_\varOmega \nabla w \cdot \mathbf {n} \delta w + w k_\varOmega \nabla \delta w \cdot \mathbf {n} \Big ) ds} + \int _{\partial {\mathcal {D}}}{\gamma w \delta w \ ds} \\&\quad = \int _{\partial {\mathcal {D}}}{U_D \Big (\gamma \delta w - k_\varOmega \nabla \delta w \cdot \mathbf {n} \Big ) ds} . \end{aligned} \end{aligned}$$
(51)

It is straightforward to observe that the bilinear form on the left-hand side of (51) is coercive owing a sufficiently large value of \(\gamma \) is chosen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomini, M. An Equilibrated Fluxes Approach to the Certified Descent Algorithm for Shape Optimization Using Conforming Finite Element and Discontinuous Galerkin Discretizations. J Sci Comput 75, 560–595 (2018). https://doi.org/10.1007/s10915-017-0545-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0545-1

Keywords

Mathematics Subject Classification

Navigation