Skip to main content
Log in

Microstructural and Residuals Stress Analysis of Friction Stir Welding of X80 Pipeline Steel Plates Using Magnetic Barkhausen Noise

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Friction stir welding is a solid-state joining method conducted under large stress and strain conditions at low peak temperatures when compared to arc welding. Friction stir welding produces a large variety of microstructures and a M-shaped residual stress line profile along the cross-section of the welds. In this work, we present the use of magnetic Barkhausen noise to qualitatively assess the residual stress profile along the transverse direction of a two-pass friction stir welding butt joint on a X80 pipeline steel. Results were compared and correlated to X-ray diffraction, microstructural and hardness characterization. The peak position and the root mean square profiles of the magnetic Barkhausen noise reproduced the residual stress profile obtained by X-ray diffraction and the hardness profile, respectively. These results can be used for developing a qualitative quality control method for friction stir welding joints in other steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avila, J.A., Rodriguez, J., Mei, P.R., Ramirez, A.J.: Microstructure and fracture toughness of multipass friction stir welded joints of API-5L-X80 steel plates. Mater. Sci. Eng. A 673, 257–265 (2016). https://doi.org/10.1016/j.msea.2016.07.045

    Article  Google Scholar 

  2. Sowards, J.W., Gnäupel-Herold, T., David McColskey, J., Pereira, V.F., Ramirez, A.J.: Characterization of mechanical properties, fatigue-crack propagation, and residual stresses in a microalloyed pipeline-steel friction-stir weld. Mater. Des. 88, 632–642 (2015). https://doi.org/10.1016/j.matdes.2015.09.049

    Article  Google Scholar 

  3. Alipooramirabad, H., Paradowska, A., Ghomashchi, R., Reid, M.: Investigating the effects of welding process on residual stresses, microstructure and mechanical properties in HSLA steel welds. J. Manuf. Process. 28, 70–81 (2017). https://doi.org/10.1016/j.jmapro.2017.04.030

    Article  Google Scholar 

  4. Kumar, N., Mishra, R.S., Baumann, J.A.: Residual Stresses in Friction Stir Welding. Elsevier, Amsterdam (2014). https://doi.org/10.1016/c2013-0-09884-2

    Book  Google Scholar 

  5. Brauss, M.E.: Residual stress characterization of welds and post-weld processes using X-ray diffraction techniques. Proc. SPIE. 3399, 196–204 (1998). https://doi.org/10.1117/12.302553

    Article  Google Scholar 

  6. Rossini, N.S., Dassisti, M., Benyounis, K.Y., Olabi, A.G.: Methods of measuring residual stresses in components. Mater. Des. 35, 572–588 (2012). https://doi.org/10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  7. Franco, F.A., Padovese, L.R.: Non-destructive flaw mapping of steel surfaces by the continuous magnetic Barkhausen noise method: detection of plastic deformation. J. Nondestruct. Eval. 37(2), 26 (2018). https://doi.org/10.1007/s10921-018-0480-6

    Article  Google Scholar 

  8. Jiles, D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 50, 893–924 (2000). https://doi.org/10.1023/A:1022846128461

    Article  Google Scholar 

  9. Augustyniak, M., Augustyniak, B., Piotrowski, L., Chmielewski, M.: Determination of magnetisation conditions in a double-core Barkhausen noise measurement set-up. J. Nondestruct. Eval. 34(2), 16 (2015). https://doi.org/10.1007/s10921-015-0288-6

    Article  Google Scholar 

  10. Vourna, P., Ktena, A., Tsakiridis, P.E., Hristoforou, E.: A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels. NDT E Int. 71, 33–42 (2015). https://doi.org/10.1016/j.ndteint.2014.09.011

    Article  Google Scholar 

  11. Stupakov, O., Melikhov, Y.: Influence of magnetizing and filtering frequencies on Barkhausen noise response. IEEE Trans. Magn. 50, 1–4 (2014). https://doi.org/10.1109/TMAG.2013.2291933

    Article  Google Scholar 

  12. Ranjan, R., Jiles, D.C., Rastogi, P.: Magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content. IEEE Trans. Magn. 23, 1869–1876 (1987). https://doi.org/10.1109/TMAG.1987.1065175

    Article  Google Scholar 

  13. Anglada-Rivera, J., Padovese, L.R., Capó-Sánchez, J.: Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 231, 299–306 (2001). https://doi.org/10.1016/S0304-8853(01)00066-X

    Article  Google Scholar 

  14. Buttle, D.J., Briggs, G.A.D., Jakubovics, J.P., Little, E.A., Scruby, C.B., Busse, G., Sayers, C.M., Green, R.E.: Magnetoacoustic and Barkhausen emission in ferromagnetic materials [and discussion]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 320(1554), 363–378 (1986). https://doi.org/10.1098/rsta.1986.0124

    Article  Google Scholar 

  15. Saquet, O., Chicois, J., Vincent, A.: Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater. Sci. Eng. A 269, 73–82 (1999). https://doi.org/10.1016/S0921-5093(99)00155-0

    Article  Google Scholar 

  16. Franco, F.A., González, M.F.R., de Campos, M.F., Padovese, L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. J. Nondestruct. Eval. 32, 93–103 (2013). https://doi.org/10.1007/s10921-012-0162-8

    Article  Google Scholar 

  17. Piotrowski, L., Augustyniak, B., Chmielewski, M., Tomáš, I.: The influence of plastic deformation on the magnetoelastic properties of the CSN12021 grade steel. J. Magn. Magn. Mater. 321, 2331–2335 (2009). https://doi.org/10.1016/j.jmmm.2009.02.028

    Article  Google Scholar 

  18. Kleber, X., Vincent, A.: On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel. NDT E Int. 37, 439–445 (2004). https://doi.org/10.1016/j.ndteint.2003.11.008

    Article  Google Scholar 

  19. Perez-Benitez, J.A., Capo-Sanchez, J., Anglada-Rivera, J., Padovese, L.R.: A study of plastic deformation around a defect using the magnetic Barkhausen noise in ASTM 36 steel. NDT E Int. 41, 53–58 (2008). https://doi.org/10.1016/j.ndteint.2006.12.002

    Article  Google Scholar 

  20. Raja, A.R., Khan Yusufzai, M.Z., Vashista, M.: Micro-magnetic analysis of friction stir welded steel plates. Int. J. Adv. Manuf. Technol. 97(5–8), 2051–2059 (2018). https://doi.org/10.1007/s00170-018-2094-7

    Article  Google Scholar 

  21. Vourna, P., Ktena, A., Tsakiridis, P.E., Hristoforou, E.: An accurate evaluation of the residual stress of welded electrical steels with magnetic Barkhausen noise. Measurement 71, 31–45 (2015). https://doi.org/10.1016/j.measurement.2015.04.007

    Article  Google Scholar 

  22. Ju, J.B., Lee, J.S., Jang, J.I., Kim, W.S., Kwon, D.: Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method. Int. J. Press. Vessels Pip. 80, 641–646 (2003). https://doi.org/10.1016/s0308-0161(03)00131-5

    Article  Google Scholar 

  23. Kolařík, K., Ganev, N., Trojan, K., Řídký, O., Zuzánek, L., Čapek, J.: X-Ray diffraction and Barkhausen noise diagnostics of thick welds prepared by metal active gas and laser welding. Appl. Mech. Mater. 827, 113–116 (2016). https://doi.org/10.4028/www.scientific.net/AMM.827.113

    Article  Google Scholar 

  24. Sambamurthy, E., Dutta, S., Panda, A.K., Mitra, A., Roy, R.K.: Evaluation of post-weld heat treatment behavior in modified 9Cr-1Mo steel weldment by magnetic Barkhausen emission. Int. J. Press. Vessels Pip. 123, 86–91 (2014). https://doi.org/10.1016/j.ijpvp.2014.08.004

    Article  Google Scholar 

  25. Ávila, J.A., Ruchert, C.O.F.T., Mei, P.R., Marinho, R.R., Paes, M.T.P., Ramirez, A.J.: Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates. Eng. Fract. Mech. 147, 176–186 (2015). https://doi.org/10.1016/j.engfracmech.2015.08.006

    Article  Google Scholar 

  26. Fitzpatrick, M.E., Fry, A.T., Holdway, P., Kandil, F.A., Shackleton, J., Suominen, L.: Determination of residual stresses by X-ray diffraction. Measurement good practice guide book no. 52. In: NPL, p. 68. London (2005)

  27. Alessandro, B., Beatrice, C., Bertotti, G., Montorsi, A.: Phenomenology and interpretation of the Barkhausen effect in ferromagnetic materials (invited). J. Appl. Phys. 64, 5355–5360 (1988). https://doi.org/10.1063/1.342370

    Article  Google Scholar 

  28. Avila, J.A.D., Giorjao, R.A.R., Rodriguez, J.F., Fonseca, E.B., Ramirez, A.J.: Modeling of thermal cycles and microstructural analysis of pipeline steels processed by friction stir processing. Int. J. Adv. Manuf. Technol. 98, 2611–2618 (2018). https://doi.org/10.1007/s00170-018-2408-9

    Article  Google Scholar 

  29. Krauss, G.: Steels: Processing, Structure and Perfomance, 1st edn. ASM International, Materials Park (2005)

    Google Scholar 

  30. Ozekcin, A., Jin, H.W., Koo, J.Y., Bangaru, N.V., Ayer, R., Vaughn, G., Steel, R., Packer, S.: A microstructural study of friction stir welded joints of carbon steels. Fourteenth Int. Offshore Polar Eng. Conf. 14, 284–288 (2004)

    Google Scholar 

  31. Cho, H.-H., Kang, S.H., Kim, S.-H., Oh, K.H., Kim, H.J., Chang, W.-S., Han, H.N.: Microstructural evolution in friction stir welding of high-strength linepipe steel. Mater. Des. 34, 258–267 (2012). https://doi.org/10.1016/j.matdes.2011.08.010

    Article  Google Scholar 

  32. Avila, J., Escobar, J., Cunha, B., Magalhães, W., Mei, P., Rodriguez, J., Pinto, H., Ramirez, A.: Physical simulation as a tool to understand friction stir processed X80 pipeline steel plate complex microstructures. J. Mater. Res. Technol. 01, 1–10 (2018). https://doi.org/10.1016/j.jmrt.2018.09.009

    Article  Google Scholar 

  33. Sha, Q., Li, D.: Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content. Mater. Sci. Eng. A 585, 214–221 (2013). https://doi.org/10.1016/j.msea.2013.07.055

    Article  Google Scholar 

  34. Sánchez, J.C., De Campos, M.F., Padovese, L.R.: Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. J. Magn. Magn. Mater. 324, 11–14 (2012). https://doi.org/10.1016/j.jmmm.2011.07.014

    Article  Google Scholar 

  35. Aydin, H., Nelson, T.W.: Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input. Mater. Sci. Eng. A 586, 313–322 (2013). https://doi.org/10.1016/j.msea.2013.07.090

    Article  Google Scholar 

  36. Mishra, R.S.R.S., Mahoney, M.M.W.M.W.: Friction Stir Welding and Processing. ASM International, Materials Park (2005). https://doi.org/10.1361/fswp2007p001

    Book  Google Scholar 

  37. Ávila, J.A.D., Lima, V., Ruchert, C.O.F.T., Mei, P.R., Ramirez, A.J.: Guide for recommended practices to perform crack tip opening displacement tests in high strength low alloy steels. Soldag. Inspeção. 21, 290–302 (2016). https://doi.org/10.1590/0104-9224/SI2103.05

    Article  Google Scholar 

  38. J. Pal’a, J., Bydžovský, J.: Barkhausen noise as a function of grain size in non-oriented FeSi steel. Meas. J. Int. Meas. Confed. 46, 866–870 (2013). https://doi.org/10.1016/j.measurement.2012.10.014

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Brazilian Nanotechnology National Laboratory, CNPEM/MCTIC for the assistance with SEM measurements; PETROBRAS for providing research funding; Tenaris Confab for the donation of the materials used in this research; and USP-EESC for the assistance with the XRD measurements. Authors would like to acknowledge Dr Alberto Cury for his support regarding XRD analysis. J.A. Avila acknowledges CNPq (Grant No. 150215/2016-9). Dr. H. Pinto is a CNPq fellow and Dr. Freddy A. Franco G. acknowledges the Support to Research and Extension FAEPEX at Unicamp (Ref. 1424/2015) for research support. Special thanks are due to Dr. Julian Escobar for his important review and suggestions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Avila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, J.A., Conde, F.F., Pinto, H.C. et al. Microstructural and Residuals Stress Analysis of Friction Stir Welding of X80 Pipeline Steel Plates Using Magnetic Barkhausen Noise. J Nondestruct Eval 38, 86 (2019). https://doi.org/10.1007/s10921-019-0625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0625-2

Keywords

Navigation