Skip to main content
Log in

X-ray CT-Based Defect Evaluation of Continuous CFRP Additive Manufacturing

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The spread of additive technologies from prototyping to manufacturing has made the development of new products possible, but still needs effective methods in order to allow their characterization. In particular, porosity is considered a crucial aspect of AM products. A prototype system for the deposition of continuous carbon fiber-reinforced polymers with a thermoplastic matrix has been recently developed at Mechanical Engineering Department of Politecnico di Milano. This application is of interest, as it would avoid the expensive development and manufacturing of specific molds. The mechanical performance of the manufactured components depends mainly on porosity and on non-correct adhesion among filaments, even in the case of conventional manufacturing processes. The additive deposition shows even more relevant issues of this kind. Hence the need for a characterization of the process. The conventional approach considers a destructive test to characterize the composite mechanical properties or porosity. The aim of this paper is proposing original approaches to evaluate both porosity and non-correct adhesion by means of X-Ray computed tomography. The method is validated by comparing the porosity with the reference destructive method defined in the ASTM D3171 standard. It is also shown that the amount of defects is correlated to the mechanical properties of the obtained components, thus the approach can be used for a non-destructive evaluation of the manufactured parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Goh, G.D., Yap, Y.L., Agarwala, S., Yeong, W.Y.: Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv. Mater. Technol. 4(1), 1800271 (2019). https://doi.org/10.1002/admt.201800271

    Article  Google Scholar 

  2. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Nakamura, T., Todoroki, A., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016). https://doi.org/10.1038/srep23058

    Article  Google Scholar 

  3. Li, N., Li, Y., Liu, S.: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J. Mater. Process. Technol. 238, 218–225 (2016). https://doi.org/10.1016/j.jmatprotec.2016.07.025

    Article  Google Scholar 

  4. Yang, C., Tian, X., Liu, T., Cao, Y., Li, D.: 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance. Rapid Prototyping J. 23(1), 209–215 (2017). https://doi.org/10.1108/RPJ-08-2015-0098

    Article  Google Scholar 

  5. Blok, L.G., Longana, M.L., Yu, H., Woods, B.K.: An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 22, 176–186 (2018). https://doi.org/10.1016/j.addma.2018.04.039

    Article  Google Scholar 

  6. van de Werken, N., Tekinalp, H., Khanbolouki, P., Ozcan, S., Williams, A., Tehrani, M.: Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit. Manuf. 31, 100962 (2020). https://doi.org/10.1016/j.addma.2019.100962

    Article  Google Scholar 

  7. Gauvin, R., Chibani, M., Lafontaine, P.: The modeling of pressure distribution in resin transfer molding. J. Reinforced Plast. Compos. 6(4), 367–377 (1987). https://doi.org/10.1177/073168448700600406

    Article  Google Scholar 

  8. Toscano, C., Vitiello, C.: Influence of the stacking sequence on the porosity in carbon fiber composites. J. Appl. Polym. Sci. 122(6), 3583–3589 (2011). https://doi.org/10.1002/app.34769

    Article  Google Scholar 

  9. Costa, M.L., Rezende, M.C., de Almeida, S.F.M.: Effect of void content on the moisture absorption in polymeric composites. Polymer 45(6), 691–698 (2006). https://doi.org/10.1080/03602550600609549

    Article  Google Scholar 

  10. American Society for Testing and Materials International (2017) ASTM D790-17: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. https://doi.org/10.1520/D0790-17

  11. Hao, W., Liu, Y., Zhou, H., Chen, H., Fang, D.: Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polym. Test. 65, 29–34 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.004

    Article  Google Scholar 

  12. Kastner, J., Plank, B., Salaberger, D., Sekelja, J.: Defect and porosity determination of fibre reinforced polymers by X-ray computed tomography. In: NDT in Aerospace 2010—We.1.A.2, pp. 1–12 (2010)

  13. Liu, X., Chen, F.: Defects characterization in CFRP using X-ray computed tomography. Polym. Polym. Compos. 24(2), 149–154 (2016). https://doi.org/10.1177/096739111602400210

    Article  Google Scholar 

  14. Stamopoulos, A.G., Tserpes, K.I., Dentsoras, A.J.: Quality assessment of porous CFRP specimens using X-ray computed tomography data and artificial neural networks. Compos. Struct. 192, 327–335 (2018). https://doi.org/10.1016/j.compstruct.2018.02.096

    Article  Google Scholar 

  15. Mehdikhani, M., Nguyen, N.Q., Straumit, I., Gorbatikh, L., Lomov, S.V.: Analysis of void morphology in composite laminates using micro-computed tomography. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, vol 406, (2018) https://doi.org/10.1088/1757-899X/406/1/012010

  16. Nguyen, N.Q., Mehdikhani, M., Straumit, I., Gorbatikh, L., Lessard, L., Lomov, S.V.: Micro-CT measurement of fibre misalignment: application to carbon/epoxy laminates manufactured in autoclave and by vacuum assisted resin transfer moulding. Composites Part A 104, 14–23 (2018). https://doi.org/10.1016/j.compositesa.2017.10.018

    Article  Google Scholar 

  17. Wright, P., Fu, X., Sinclair, I., Spearing, S.: Ultra high resolution computed tomography of damage in notched carbon fiber-epoxy composites. J. Compos. Mater. 42(19), 1993–2002 (2008). https://doi.org/10.1177/0021998308092211

    Article  Google Scholar 

  18. Wright, P., Moffat, A., Sinclair, I., Spearing, S.M.: High resolution tomographic imaging and modelling of notch tip damage in a laminated composite. Compos. Sci. Technol. 70(10), 1444–1452 (2010). https://doi.org/10.1016/j.compscitech.2010.04.012

    Article  Google Scholar 

  19. Scott, A.E., Mavrogordato, M., Wright, P., Sinclair, I., Spearing, S.M.: In situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography. Compos. Sci. Technol. 71(12), 1471–1477 (2011). https://doi.org/10.1016/j.compscitech.2011.06.004

    Article  Google Scholar 

  20. Sket, F., Seltzer, R., Molina-Aldareguía, J.M., Gonzalez, C., Llorca, J.: Determination of damage micromechanisms and fracture resistance of glass fiber/epoxy cross-ply laminate by means of X-ray computed microtomography. Compos. Sci. Technol. 72(2), 350–359 (2012). https://doi.org/10.1016/j.compscitech.2011.11.025

    Article  Google Scholar 

  21. Pinter, P., Dietrich, S., Bertram, B., Kehrer, L., Elsner, P., Weidenmann, K.A.: Comparison and error estimation of 3D fibre orientation analysis of computed tomography image data for fibre reinforced composites. NDT E Int. 95, 26–35 (2018). https://doi.org/10.1016/j.ndteint.2018.01.001

    Article  Google Scholar 

  22. Tserpes, K.I., Stamopoulos, A.G.: A multi-scale numerical methodology for predicting the mechanical properties of porous CFRP laminates using data from X-ray computerized tomography. In: ECCM 2016—Proceeding of the 17th European Conference on Composite Materials, pp. 1–8 (2016)

  23. Goh, G.D., Dikshit, V., Nagalingam, A.P., Goh, G.L., Agarwala, S., Sing, S.L., Wei, J., Yeong, W.Y.: Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics. Mater. Des. 137, 79–89 (2018). https://doi.org/10.1016/j.matdes.2017.10.021

    Article  Google Scholar 

  24. Parandoush, P., Zhou, C., Lin, D.: 3D printing of ultrahigh strength continuous carbon fiber composites. Adv. Eng. Mater. 21(2), 1800622 (2019). https://doi.org/10.1002/adem.201800622

    Article  Google Scholar 

  25. He, Q., Wang, H., Fu, K., Ye, L.: 3D printed continuous CF/PA6 composites: effect of microscopic voids on mechanical performance. Compos. Sci. Technol. 191, 108077 (2020). https://doi.org/10.1016/j.compscitech.2020.108077

    Article  Google Scholar 

  26. More, N., Basse-Cathalinat, B., Baquey, C., Lacroix, F., Ducassou, D.: Application of novel techniques of medical imaging to the non-destructive analysis of carbon-carbon composite materials. Nucl. Instrum. Methods Phys. Res. 214(2–3), 531–536 (1983). https://doi.org/10.1016/0167-5087(83)90628-2

    Article  Google Scholar 

  27. Kerckhofs, G., Schrooten, J., Van Cleynenbreugel, T., Lomov, S.V., Wevers, M.: Validation of X-ray microfocus computed tomography as an imaging tool for porous structures. Rev. Sci. Instrum. 79(1), 013711 (2008). https://doi.org/10.1063/1.2838584

    Article  Google Scholar 

  28. Yang, Y.S., Gureyev, T.E., Tulloh, A., Clennell, M.B., Pervukhina, M.: Feasibility of a data-constrained prediction of hydrocarbon reservoir sandstone microstructures. Meas. Sci. Technol. 21(4), 047001 (2010). https://doi.org/10.1088/0957-0233/21/4/047001

    Article  Google Scholar 

  29. Bloom, M., Russell, M.J., Kustau, A., Mandayam, S., Sukumaran, B.: Measurement of porosity in granular particle distributions using adaptive thresholding. IEEE Trans. Instrum. Meas. 59, 1192–1199 (2010). https://doi.org/10.1109/TIM.2010.2040902

    Article  Google Scholar 

  30. Jin, Y., Konno, Y., Nagao, J.: Pressurized subsampling system for pressured gas-hydrate-bearing sediment: microscale imaging using X-ray computed tomography. Rev. Sci. Instrum. 85(9), 094502 (2014). https://doi.org/10.1063/1.4896354

    Article  Google Scholar 

  31. Thompson, A., Maskery, I., Leach, R.K.: X-ray computed tomography for additive manufacturing: a review. Meas. Sci. Technol. 27(7), 72001 (2016). https://doi.org/10.1088/0957-0233/27/7/072001

    Article  Google Scholar 

  32. Zou, C., Marrow, T.J., Reinhard, C., Li, B., Zhang, C., Wang, S.: Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography. In: Journal of Instrumentation, Institute of Physics Publishing, vol. 11, p. C03052, (2016) https://doi.org/10.1088/1748-0221/11/03/C03052

  33. Xu, F., Xiao, Y., Hu, X., Dong, B., Liu, W., Li, Y.: In situ investigation of Al-Ti mixed metal system microwave sintering by synchrotron radiation computed tomography. In: Journal of Instrumentation, Institute of Physics Publishing, vol. 11, p. C02074, (2016) https://doi.org/10.1088/1748-0221/11/02/C02074

  34. Wang, Y.D., Liu, K.Y., Yang, Y.S., Ren, Y.Q., Hu, T., Deng, B., Xiao, T.Q.: Quantitative multi-scale analysis of mineral distributions and fractal pore structures for a heterogeneous Junger Basin shale. J. Instrum. 11(4), C04005 (2016). https://doi.org/10.1088/1748-0221/11/04/C04005

    Article  Google Scholar 

  35. American Society for Testing and Materials International (2015) ASTM D3171-15: Standard Test Methods for Constituent Content of Composite Materials. https://doi.org/10.1520/D3171-15

  36. (2020) Concordia Fibers. https://www.concordiafibers.com/index.html

  37. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  38. International Organization for Standardization (2017) ISO 15708-3: Non-destructive Testing—Radiation Methods for Computed Tomography Part 3: Operation and Interpretation

  39. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Princeton Mathematical Series. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Italian Ministry of Education, University and Research for the support provided throughout the Project “Department of Excellence LIS4.0—Lightweight and Smart Structures for Industry 4.0” (CUP: D56C18000400006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Petrò.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrò, S., Reina, C. & Moroni, G. X-ray CT-Based Defect Evaluation of Continuous CFRP Additive Manufacturing. J Nondestruct Eval 40, 7 (2021). https://doi.org/10.1007/s10921-020-00737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00737-7

Keywords

Navigation