Skip to main content
Log in

Advances and Applications of Cellulose Bio-Composites in Biodegradable Materials

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose is a natural polymer that has a lot of potentials. Cellulose gained more interest owing to its renewability, non-toxicity, economic value, biodegradability, high mechanical properties, high surface area, and biocompatibility. New sources, new isolation processes, and new treatments are currently under development to satisfy the increasing demand for producing new types of bio-based materials on an industrial scale. This article discusses the fundamentals and latest breakthroughs in cellulose biopolymer materials used in the fabrication of composite films owing to the cellulose forming films. Bio-polymers are finding wide applications due to their intrinsic properties such as low density, low thermal conductivity, corrosion resistance, and ease of manufacturing complex shapes. Cellulose possesses a highly crystallized structure, hence it is insoluble in typical organic solvents. Environmental restrictions are increasingly stringent, which is a key element leading to the growth of studies on this subject. These hydrocolloids have been modified by taking advantage of their valuable features; the mechanical strength and water resistance of cellulose make it being used as a thickener for large-scale applications such as cellulose composite films can extend the shelf life of a product while maintaining its biodegradability. New materials with high values are a hot topic for future research with commercial interest. These composite film potentials are contributing to the bio-economy. Here, the emphasis on the potential application of bio-composites of cellulose in various industries has been discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

References

  1. Chang XX, Mubarak NM, Mazari SA, Jatoi AS, Ahmad A, Khalid M, Walvekar R, Abdullah EC, Karri RR, Siddiqui MTH, Nizamuddin S (2021) A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J Ind Eng Chem 104:362–380. doi:https://doi.org/10.1016/j.jiec.2021.08.033

    Article  CAS  Google Scholar 

  2. Dziuba R, Grabowska K, Wawro D, Wietecha J, Wysokinska Z (2021) Natural polymers on the global and european market-presentation of research results in the lukasiewicz research network-institute of biopolymers and chemical fibers-case studies on the cellulose and chitosan fibers. Autex Res J 21(4):445–458. doi:https://doi.org/10.2478/aut-2021-0033

    Article  CAS  Google Scholar 

  3. Abdelhamid HN, Mathew AP (2021) Cellulose-zeolitic imidazolate frameworks (CelloZIFs) for multifunctional environmental remediation: adsorption and catalytic degradation. Chem Eng J. https://doi.org/10.1016/J.Cej.2021.131733

    Article  Google Scholar 

  4. Ahmad F, Mushtaq B, Butt FA, Zafar MS, Ahmad S, Afzal A, Nawab Y, Rasheed A, Ulker Z (2021) Synthesis and characterization of nonwoven cotton-reinforced cellulose hydrogel for wound dressings. Polymers-Basel. https://doi.org/10.3390/Polym13234098

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aziz T, Ullah A, Fan H, Ullah R, Haq F, Khan FU, Iqbal M, Wei J (2021) Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 29(7):2062–2071. doi:https://doi.org/10.1007/s10924-021-02045-1

    Article  CAS  Google Scholar 

  6. Amorim JDP, Nascimento HA, Silva CJG, Medeiros ADM, Silva IDL, Costa AFS, Vinhas GM, Sarubbo LA (2021) Obtainment of bacterial cellulose with added propolis extract for cosmetic applications. Polym Eng Sci. doi:https://doi.org/10.1002/pen.25868

    Article  Google Scholar 

  7. Amoroso L, De France KJ, Milz CI, Siqueira G, Zimmermann T, Nystrom G (2021) Sustainable cellulose nanofiber films from carrot pomace as sprayable coatings for food packaging applications. ACS Sustain Chem Eng. doi:https://doi.org/10.1021/acssuschemeng.1c06345

    Article  Google Scholar 

  8. Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M (2020) Advance study of cellulose nanocrystals properties and applications. J Polym Environ 28(4):1117–1128. doi:https://doi.org/10.1007/s10924-020-01674-2

    Article  CAS  Google Scholar 

  9. Arumughan V, Nypelo T, Hasani M, Larsson A (2021) Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv Colloid Interfac. 298

  10. Aziz J, Zubair MA, Saleem M (2021) Development and testing of cellulose nanocrystal-based concrete. Case Stud Constrat. https://doi.org/10.1016/j.cscm.2021.e00761

    Article  Google Scholar 

  11. Chen RW, Ling H, Huang QB, Yang Y, Wang XH (2021) Interface engineering on cellulose-based flexible electrode enables high mass loading wearable supercapacitor with ultrahigh capacitance and energy density. Small. https://doi.org/10.1002/Smll.202106356

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cidreira ACM, de Castro KC, Hatami T, Linan LZ, Mei LHI (2021) Cellulose nanocrystals-based materials as hemostatic agents for wound dressings: a review. Biomed Microdevices. https://doi.org/10.1007/S10544-021-00581-0

    Article  PubMed  Google Scholar 

  13. Aziz T, Ullah A, Ali A, Shabeer M, Shah MN, Haq F, Iqbal M, Ullah R, Khan FU (2022) Manufactures of bio-degradable and bio-based polymers for bio-materials in the pharmaceutical field. J Appl Polym Sci 139(29):e52624. doi:https://doi.org/10.1002/app.52624

    Article  CAS  Google Scholar 

  14. Jiang ZS, Ho SH, Wang X, Li YD, Wang CY (2021) Application of biodegradable cellulose-based biomass materials in wastewater treatment. Environ Pollut. https://doi.org/10.1016/J.Envpol.2021.118087

    Article  PubMed  Google Scholar 

  15. Tsuchiya H, Asaki Y, Sinawang G, Asoh TA, Osaki M, Park J, Ikemoto Y, Yamaguchi H, Harada A, Uyama H, Takashima Y (2021) Cellulose nanofiber composite polymeric materials with reversible and movable cross-links and evaluation of their mechanical properties. ACS Appl Polym Mater. doi:https://doi.org/10.1021/acsapm.1c01332

    Article  Google Scholar 

  16. Huang XM, Yang LH, Meng LL, Qiu TT (2021) Mechanical and thermal properties of cellulose nanofibers from jute fibers reinforced polyvinyl alcohol composites. Polym Sci Ser 63(6):815–821. doi:https://doi.org/10.1134/S0965545x21350054

    Article  CAS  Google Scholar 

  17. Garcia-Ramon JA, Carmona-Garcia R, Valera-Zaragoza M, Aparicio-Saguilan A, Bello-Perez LA, Aguirre-Cruz A, Alvarez-Ramirez J (2021) Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis. Int J Biol Macromol 187:35–42. doi:https://doi.org/10.1016/j.ijbiomac.2021.07.112

    Article  CAS  PubMed  Google Scholar 

  18. Li ZD, Qiu FX, Yue XJ, Tian Q, Yang DY, Zhang T (2021) Eco-friendly self-crosslinking cellulose membrane with high mechanical properties from renewable resources for oil/water emulsion separation. J Environ Chem Eng. https://doi.org/10.1016/J.Jece.2021.105857

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mulla R, Jones DR, Dunnill CW (2021) Thin-films on cellulose paper to construct thermoelectric generator of promising power outputs suitable for low-grade heat recovery. Mater Today Commun. https://doi.org/10.1016/J.Mtcomm.2021.102738

    Article  Google Scholar 

  20. Ounifi I, Guesmi Y, Ursino C, Agougui H, Jabli M, Hafiane A, Figoli A, Ferjani E (2021) Synthesis of a thin-film polyamide-cellulose acetate membrane: effect of monomers and porosity on nano-filtration performance. J Nat Fibers. doi:https://doi.org/10.1080/15440478.2021.2002766

    Article  Google Scholar 

  21. Chen L, Luo S-M, Huo C-M, Shi Y-F, Feng J, Zhu J-Y, Xue W, Qiu X (2022) New insight into lignin aggregation guiding efficient synthesis and functionalization of a lignin nanosphere with excellent performance. Green Chem 24(1):285–294. doi:https://doi.org/10.1039/D1GC03651C

    Article  CAS  Google Scholar 

  22. Xia GM, Zhou QW, Xu Z, Zhang JM, Zhang J, Wang J, You JH, Wang YH, Nawaz H (2021) Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118569

    Article  Google Scholar 

  23. Sun HD, Liu Y, Guo XF, Zeng KZ, Mondal AK, Li JG, Yao YG, Chen LH (2021) Strong, robust cellulose composite film for efficient light management in energy efficient building. Chem Eng J. https://doi.org/10.1016/J.Cej.2021.131469

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aziz T, Ullah A, Fan H, Jamil MI, Khan FU, Ullah R, Iqbal M, Ali A, Ullah B (2021) Recent progress in silane coupling agent with its emerging applications. J Polym Environ 29(11):3427–3443. https://doi.org/10.1007/s10924-021-02142-1

    Article  CAS  Google Scholar 

  25. Wu ZQ, Tong CL, Zhang JX, Sun JS, Jiang HX, Duan MX, Wen CR, Wu CH, Pang J (2021) Investigation of the structural and physical properties, antioxidant and antimicrobial activity of konjac glucomannan/cellulose nanocrystal bionanocomposite films incorporated with phlorotannin from sargassum. Int J Biol Macromol 192:323–330. doi:https://doi.org/10.1016/j.ijbiomac.2021.09.200

    Article  CAS  PubMed  Google Scholar 

  26. Xu Z, Zhou QW, Wang LX, Xia GM, Ji XX, Zhang JM, Zhang J, Nawaz H, Wang J, Peng JF (2021) Transparent cellulose-based films prepared from used disposable paper cups via an ionic liquid. Polymers-Basel. https://doi.org/10.3390/Polym13234209

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aminzare M, Moniri R, Azar HH, Mehrasbi MR (2021) Evaluation of antioxidant and antibacterial interactions between resveratrol and eugenol in carboxymethyl cellulose biodegradable film. Food Sci Nutr. doi:https://doi.org/10.1002/fsn3.2656

    Article  PubMed  PubMed Central  Google Scholar 

  28. An LL, Chen J, Heo JW, Bae JH, Jeong H, Kim YS (2021) Synthesis of lignin-modified cellulose nanocrystals with antioxidant activity via Diels-Alder reaction and its application in carboxymethyl cellulose film. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118651

    Article  Google Scholar 

  29. Zinge C, Kandasubramanian B (2020) Nanocellulose based biodegradable polymers. Eur Polym J 133. doi:https://doi.org/10.1016/j.eurpolymj.2020.109758

    Article  Google Scholar 

  30. Panchal SS, Vasava DV (2020) Biodegradable polymeric materials: synthetic approach. ACS Omega 5(9):4370–4379. doi:https://doi.org/10.1021/acsomega.9b04422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kou XR, Zhao QX, Xu WW, Xiao ZB, Niue YW, Wang K (2021) Biodegradable materials as nanocarriers for drugs and nutrients. J Renew Mater 9(7):1189–1211. doi:https://doi.org/10.32604/jrm.2021.015268

    Article  CAS  Google Scholar 

  32. Haq F, Mehmood S, Haroon M, Kiran M, Waseem K, Aziz T, Farid A (2022) Role of starch based materials as a bio-sorbents for the removal of dyes and heavy metals from wastewater. J Polym Environ 30(5):1730–1748. doi:https://doi.org/10.1007/s10924-021-02337-6

    Article  CAS  Google Scholar 

  33. Mulcahy KR, Kilpatrick AFR, Harper GDJ, Walton A, Abbott AP (2022) Debondable adhesives and their use in recycling. Green Chem 24(1):36–61. doi:https://doi.org/10.1039/D1GC03306A

    Article  CAS  Google Scholar 

  34. Taghizadeh M, Taghizadeh A, Yazdi MK, Zarrintaj P, Stadler FJ, Ramsey JD, Habibzadeh S, Hosseini Rad S, Naderi G, Saeb MR, Mozafari M, Schubert US (2022) Chitosan-based inks for 3D printing and bioprinting. Green Chem 24(1):62–101. doi:https://doi.org/10.1039/D1GC01799C

    Article  CAS  Google Scholar 

  35. Liu Z, Li Z, Zhong H, Zeng G, Liang Y, Chen M, Wu Z, Zhou Y, Yu M, Shao B (2017) Recent advances in the environmental applications of biosurfactant saponins: a review. J Environ Chem Eng 5(6):6030–6038. https://doi.org/10.1016/j.jece.2017.11.021

    Article  CAS  Google Scholar 

  36. Hassan FWM, Raoov M, Kamaruzaman S, Mohamed AH, Ibrahim WNW, Hanapi NSM, Zain NNM, Yahaya N, Chen DDY (2021) A rapid and efficient dispersive trehalose biosurfactant enhanced magnetic solid phase extraction for the sensitive determination of organophosphorus pesticides in cabbage (Brassica olearaceae var. capitate) samples by GC-FID. J Food Compos Anal 102:104057. doi:https://doi.org/10.1016/j.jfca.2021.104057

    Article  CAS  Google Scholar 

  37. Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Dirisala Vr, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4(3):241–249.

    Article  Google Scholar 

  38. Ali A, Nadeem M (2021) Rapid kinetic evaluation of homogeneous single-site metallocene catalysts and cyclic diene: how do the catalytic activity, molecular weight, and diene incorporation rate of olefins affect each other. 11(50): 31817–31826.

  39. Haeri SA, Abbasi S, Sajjadifar S (2017) Bio-dispersive liquid liquid microextraction based on nano rhaminolipid aggregates combined with magnetic solid phase extraction using Fe3O4 PPy magnetic nanoparticles for the determination of methamphetamine in human urine. J Chromatogr B Anal Technol biomedical life Sci 1063:101–106. doi:https://doi.org/10.1016/j.jchromb.2017.08.031

    Article  CAS  Google Scholar 

  40. Sonjan S, Ross GM, Mahasaranon S, Sinkangam B, Intanon S, Ross S (2021) Biodegradable hydrophilic film of crosslinked PVA/silk sericin for seed coating: the effect of crosslinker loading and polymer concentration. J Polym Environ 29(1):323–334. doi:https://doi.org/10.1007/s10924-020-01867-9

    Article  CAS  Google Scholar 

  41. Touchaleaume F, Martin-Closas L, Angellier-Coussy H, Chevillard A, Cesar G, Gontard N, Gastaldi E (2016) Performance and environmental impact of biodegradable polymers as agricultural mulching films. Chemosphere 144:433–439. doi:https://doi.org/10.1016/j.chemosphere.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  42. Sultana N, Kadir MRA (2011) Study of in vitro degradation of biodegradable polymer based thin films and tissue engineering scaffolds. Afr J Biotechnol 10(81):18709–18715. doi:https://doi.org/10.5897/Ajb11.2742

    Article  CAS  Google Scholar 

  43. Belibel R, Avramoglou T, Garcia A, Barbaud C, Mora L (2016) Effect of chemical heterogeneity of biodegradable polymers on surface energy: a static contact angle analysis of polyester model films. Mat Sci Eng C-Mater 59:998–1006. https://doi.org/10.1016/j.msec.2015.10.010

    Article  CAS  Google Scholar 

  44. Kalka S, Huber T, Steinberg J, Baronian K, Mussig J, Staiger MP (2014) Biodegradability of all-cellulose composite laminates. Compos Part a-Appl S 59:37–44. doi:https://doi.org/10.1016/j.compositesa.2013.12.012

    Article  CAS  Google Scholar 

  45. Hivechi A, Bahrami SH, Siegel RA (2019) Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Mat Sci Eng C-Mater 94:929–937. doi:https://doi.org/10.1016/j.msec.2018.10.037

    Article  CAS  Google Scholar 

  46. Crews K, Huntley C, Islam MS, White D, Curry M (2016) Enhancing the mechanical, thermal and biodegradability of thermoplastics through cellulose-based fillers.Abstr Pap Am Chem S251

  47. Zheng J, Aziz T, Fan H, Haq F, Khan FU, Ullah R, Ullah B, Khattak NS, Wei J (2021) Synergistic impact of cellulose nanocrystals with multiple resins on thermal and mechanical behavior. Z für Phys Chemie 235(10):1247–1262. doi:doi:https://doi.org/10.1515/zpch-2020-1697

    Article  CAS  Google Scholar 

  48. Niu X, Huan SQ, Li HM, Pan H, Rojas OJ (2021) Transparent films by ionic liquid welding of cellulose nanofibers and polylactide: Enhanced biodegradability in marine environments.J Hazard Mater 402

  49. Adepu S, Khandelwal M (2020) Ex-situ modification of bacterial cellulose for immediate and sustained drug release with insights into release mechanism. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116816

    Article  Google Scholar 

  50. Torlopov MA, Drozd NN, Paderin NM, Tarabukin DV, Udoratina EV (2021) Hemocompatibility, biodegradability and acute toxicity of acetylated cellulose nanocrystals of different types in comparison. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.118307

    Article  Google Scholar 

  51. Akinyemi BA, Adesina A (2021) Utilization of polymer chemical admixtures for surface treatment and modification of cellulose fibres in cement-based composites: a review. Cellulose 28(3):1241–1266. doi:https://doi.org/10.1007/s10570-020-03627-3

    Article  CAS  Google Scholar 

  52. Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111. doi:https://doi.org/10.1007/s10570-011-9533-z

    Article  CAS  Google Scholar 

  53. Kausar A (2017) Scientific potential of chitosan blending with different polymeric materials: a review. J Plast Film Sheet 33(4):384–412. https://doi.org/10.1177/8756087916679691

    Article  CAS  Google Scholar 

  54. AK HPS, Tye Y, Saurabh C, Peng LC, Lai TK, Chong E, Fazita M, Jaafar MH, Banerjee A, Syakir MI (2017) Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. Express Polym Lett 11:244–265. https://doi.org/10.3144/expresspolymlett.2017.26

    Article  CAS  Google Scholar 

  55. Kamal T, Khan SB, Bakhsh EM, Anwar Y (2021) Modification of cellulose filter paper with bimetal nanoparticles for catalytic reduction of nitroaromatics in water. Cellulose 28(17):11067–11080. doi:https://doi.org/10.1007/s10570-021-04186-x

    Article  CAS  Google Scholar 

  56. Emam AA, Faraha SAA, Kamal FH, Gamal AM, Basseem M (2020) Modification and characterization of nano cellulose crystalline from Eichhornia crassipes using citric acid: An adsorption study. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116202

    Article  Google Scholar 

  57. Rogovina SZ, Lomakin SM, Aleksanyan KV, Prut EV (2012) The structure, properties, and thermal destruction of biodegradable blends of cellulose and ethylcellulose with synthetic polymers. Russ J Phys Chem B. https://doi.org/10.1134/S1990793112060048

    Article  Google Scholar 

  58. Lin CA, Tung CC, Cheng CY (2009) Study on the pseudo-thermoplastic and biodegradable polymers of cellulose, textile bioengineering and informatics symposium proceedings, 2:699–702.

  59. Yu J, Liu Y, Liu X, Wang C, Wang J, Chu F, Tang C (2014) Integration of renewable cellulose and rosin towards sustainable copolymers by “grafting from” ATRP. Green Chem 16(4):1854–1864. doi:https://doi.org/10.1039/C3GC41550C

    Article  CAS  Google Scholar 

  60. Kittikorn T, Stromberg E, Karlsson S, Ek M (2011) The mechanical properties of natural cellulosic fiber/biodegradable polymer biocomposites. 16th International Symposium on Wood, Fiber and Pulping Chemistry, Proceedings, I & Ii:1330–1333

  61. Cohen N, Ochbaum G, Levi-Kalisman Y, Bitton R, Yerushalmi-Rozen R (2020) Polymer-induced modification of cellulose nanocrystal assemblies in aqueous suspensions. ACS Appl Polym Mater 2(2):732–740. doi:https://doi.org/10.1021/acsapm.9b01048

    Article  CAS  Google Scholar 

  62. Cichosz S, Masek A (2020) Superiority of cellulose non-solvent chemical modification over solvent-involving treatment: application in polymer composite (part II). Materials. https://doi.org/10.3390/Ma13132901

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hogan KJ, Mikos AG (2020) Biodegradable thermoresponsive polymers: applications in drug delivery and tissue engineering. Polym. https://doi.org/10.1016/j.polymer.2020.123063

    Article  Google Scholar 

  64. Bavishi C, Chugh Y, Kimura T, Natsuaki M, Kaiser C, Gordon P, Aronow HD, Abbott JD (2020) Biodegradable polymer drug-eluting stent vs. contemporary durable polymer drug-eluting stents in patients with diabetes: a meta-analysis of randomized controlled trials. Eur Heart J-Qual Car 6(1):81–88. doi:https://doi.org/10.1093/ehjqcco/qcz031

    Article  Google Scholar 

  65. Gonzalez HP, Hernandez E, Velasco MR, Raygoza RJS, Gastinel CFJ (2014) Mechanothermal performance evaluation of a biodegradable resin as coupling agent for hydrophobic polymer/cellulosic composites. Maderas-Cienc Tecnol 16(4):463–486. doi:https://doi.org/10.4067/S0718-221x2014005000038

    Article  CAS  Google Scholar 

  66. Bulanda K, Oleksy M, Oliwa R, Budzik G, Gontarz M (2020) Biodegradable polymer composites based on polylactide used in selected 3D technologies (Rapid communication). Polimery-W 65(7–8):557–562. doi:https://doi.org/10.14314/polimery.2020.7.8

    Article  CAS  Google Scholar 

  67. Colnik M, Hrncic MK, Skerget M, Knez Z (2020) Biodegradable polymers, current trends of research and their applications, a review. Chem Ind Chem Eng Q 26(4):401–418. doi:https://doi.org/10.2298/Ciceq191210018c

    Article  Google Scholar 

  68. Rogovina SZ, Aleksanyan KV, Kosarev AA, Ivanushkina NE, Prut EV, Berlin AA (2016) Biodegradable polymer composites based on polylactide and cellulose. Polym Sci Ser B. https://doi.org/10.1134/S1560090416010061

    Article  Google Scholar 

  69. Ryabov SV, Kercha YY, Kotelnikova NE, Gaiduk RL, Shtompel VI, Kosenko LA, Yakovenko AG, Kobrina LV (2001) Biodegradable polymer composites based on polyurethane and microcrystalline cellulose. Polym Sci Ser a 43(12):1256–1260

    Google Scholar 

  70. Inga-Lafebre JD, Pulido-Gonzalez H, Gonzalez-Nunez R, Hernandez-Hernandez ME, Rabelero-Velasco M, Aranda-Garcia FJ, Jasso-Gastinel CF (2019) The multirole of modified natural gums for multicomponent polymers: as coupling agents for polymers reinforced with cellulosic fibers or compatibilizers for biodegradable polymer blends. Quim Nova 42(3):296–304. doi:https://doi.org/10.21577/0100-4042.20170333

    Article  CAS  Google Scholar 

  71. Rop K, Mbui D, Njomo N, Karuku GN, Michira I, Ajayi RF (2019) Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01416

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ferreira FV, Dufresne A, Pinheiro IF, Souza DHS, Gouveia RF, Mei LHI, Lona LMF (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. Eur Polym J 108:274–285. doi:https://doi.org/10.1016/j.eurpolymj.2018.08.045

    Article  CAS  Google Scholar 

  73. Gemili S, Yemenicip lu A, Altinkaya SA (2009) Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. J Food Eng 90:453–462

    Article  Google Scholar 

  74. Tran TN, Mai BT, Setti C, Athanassiou A (2020) Transparent bioplastic derived from CO2-based polymer functionalized with oregano waste extract toward active food packaging. ACS Appl Mater Inter 12(41):46667–46677. doi:https://doi.org/10.1021/acsami.0c12789

    Article  CAS  Google Scholar 

  75. Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohyd Polym 104:59–65. doi:https://doi.org/10.1016/j.carbpol.2014.01.013

    Article  CAS  Google Scholar 

  76. Rathi SR, Coughlin EB, Hsu SL, Golub CS, Ling GH, Tzivanis MJ (2014) Maintaining structural stability of Poly(lactic acid): effects of multifunctional epoxy based reactive oligomers. Polymers-Basel 6(4):1232–1250. https://doi.org/10.3390/polym6041232

    Article  CAS  Google Scholar 

  77. Teleky B-E, Vodnar DC (2019) Biomass-derived production of itaconic acid as a building block in specialty polymers. Polymers-Basel 11(6):1035. doi: https://doi.org/10.3390/polym11061035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Torres FG, Arroyo JJ, Troncoso OP (2019) Bacterial cellulose nanocomposites: An all-nano type of material. Mat Sci Eng C-Mater 98:1277–1293. doi:https://doi.org/10.1016/j.msec.2019.01.064

    Article  CAS  Google Scholar 

  79. Zhao CY, Wang GS, Sun MT, Cai ZW, Yin ZC, Cai YR (2021) Bacterial cellulose immobilized S, cerevisiae as microbial sensor for rapid BOD detection. Fiber Polym 22(5):1208–1217. doi:https://doi.org/10.1007/s12221-021-0650-5

    Article  CAS  Google Scholar 

  80. Abral H, Fajri N, Mahardika M, Handayani D, Sugiarti E, Kim HJ (2020) A simple strategy in enhancing moisture and thermal resistance and tensile properties of disintegrated bacterial cellulose nanopaper. J Mater Res Technol 9(4):8754–8765. doi:https://doi.org/10.1016/j.jmrt.2020.06.023

    Article  CAS  Google Scholar 

  81. Zou C, Qu D, Jiang H, Lu D, Ma X, Zhao Z, Xu Y (2019) Bacterial cellulose: A versatile chiral host for circularly polarized luminescence. Molecules 24(6):1008. https://doi.org/10.3390/molecules24061008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anwar B, Bundjali B, Sunarya Y, Arcana IM (2021) Properties of bacterial cellulose and its nanocrystalline obtained from pineapple peel waste juice. Fiber Polym 22(5):1228–1236. doi:https://doi.org/10.1007/s12221-021-0765-8

    Article  CAS  Google Scholar 

  83. Bandyopadhyay S, Saha N, Saha P (2020) Comparative analysis of bacterial cellulose based polymeric films for food packaging. Proceedings of the 35th International Conference of the Polymer Processing Society (Pps-35) 2205. https://doi.org/10.1063/1.5142984

  84. Zhong CY (2020) Industrial-scale production and applications of bacterial cellulose. Front Bioeng Biotech. https://doi.org/10.3389/Fbioe.2020.605374

    Article  Google Scholar 

  85. Bang WY, Adedeji OE, Kang HJ, Kang MD, Yang J, Lim YW, Jung YH (2021) Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose. Int J Biol Macromol 193:269–275. doi:https://doi.org/10.1016/j.ijbiomac.2021.10.092

    Article  CAS  PubMed  Google Scholar 

  86. Ybanez MG, Camacho DH (2021) Designing hydrophobic bacterial cellulose film composites assisted by sound waves. RSC Adv 11(52):32873–32883. doi:https://doi.org/10.1039/d1ra02908h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Albuquerque RMB, Meira HM, Silva ID, Silva CJG, Almeida FCG, Amorim JDP, Vinhas GM, Costa AFS, Sarubbo LA (2021) Production of a bacterial cellulose/poly(3-hydroxybutyrate) blend activated with clove essential oil for food packaging. Polym Polym Compos 29(4):259–270.

  88. Badshah M, Ullah H, He F, Wahid F, Farooq U, Andersson M, Khan T (2020) Development and evaluation of drug loaded regenerated bacterial cellulose-based matrices as a potential dosage form. Front Bioeng Biotech 8.

  89. Zhu CQ, Zhang JX, Qiu SY, Jia YB, Wang LX, Wang H (2021) Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (BC) for heat-resistant and high-wettability separator in lithium -ion battery. Compos Commun. https://doi.org/10.1016/J.Coco.2021.100659

    Article  Google Scholar 

  90. Zhu JL, Shi R, Liu YN, Zhu YF, Zhang JG, Hu XH, Li LQ (2020) 3D interwoven MXene networks fabricated by the assistance of bacterial celluloses as high-performance cathode material for rechargeable magnesium battery. Appl Surf Sci. https://doi.org/10.1016/J.Apsusc.2020.146985

    Article  Google Scholar 

  91. Zheng RZ, Shi ZJ, Yang G (2020) Bacterial cellulose synthesis at solid-gas-liquid interface. Acta Polym Sin 51(8):942–948. doi:https://doi.org/10.11777/j.issn1000-3304.2020.20110

    Article  CAS  Google Scholar 

  92. Zhang ZY, Sun Y, Zheng YD, He W, Yang YY, Xie YJ, Feng ZX, Qiao K (2020) A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Mat Sci Eng C-Mater. https://doi.org/10.1016/J.Msec.2019.110249

    Article  Google Scholar 

  93. Xu XR, Chen X, Yang LY, Zhao YX, Zhang X, Shen RQ, Sun DP, Qian JS (2020) Film-like bacterial cellulose based molecularly imprinted materials for highly efficient recognition and adsorption of cresol isomers. Chem Eng J. https://doi.org/10.1016/J.Cej.2019.123007

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu ZT, Chen SY, Wu RL, Sheng N, Zhang MH, Ji P, Wang HP (2020) Top-down peeling bacterial cellulose to high strength ultrathin films and multifunctional fibers. Chem Eng J. https://doi.org/10.1016/J.Cej.2019.123527

    Article  PubMed  PubMed Central  Google Scholar 

  95. Calvino C, Macke N, Kato R, Rowan SJ (2020) Development, processing and applications of bio-sourced cellulose nanocrystal composites. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2020.101221

    Article  Google Scholar 

  96. Sayago UFC, Castro YP (2021) Development of a composite material between bacterial cellulose and E crassipes, for the treatment of water contaminated by chromium (VI). Int J Environ Sci Te. doi:https://doi.org/10.1007/s13762-021-03581-y

    Article  Google Scholar 

  97. Fernandes M, Gama M, Dourado F, Souto AP (2019) Development of novel bacterial cellulose composites for the textile and shoe industry. Microb Biotechnol 12(4):650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen X, Zhang LL, Li H, Sun JH, Cai HY, Cui DF (2013) Development of a multilayer microfluidic device integrated with a PDMS-cellulose composite film for sample pre-treatment and immunoassay. Sens Actuat a-Phys 193:54–58. doi:https://doi.org/10.1016/j.sna.2013.01.004

    Article  CAS  Google Scholar 

  99. Wsoo MA, Abd Razak SI, Shahir S, Al-Moalemi HAA, Kadir MRA, Nayan NHM (2021) Development of prolonged drug delivery system using electrospun cellulose acetate/polycaprolactone nanofibers: Future subcutaneous implantation. Polym Advan Technol 32(9):3664–3678. doi:https://doi.org/10.1002/pat.5375

    Article  CAS  Google Scholar 

  100. Fatima A, Yasir S, Ul-Islam M, Kamal T, Ahmad MW, Abbas Y, Manan S, Ullah MW, Yang G (2021) Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv Compos Hybrid Ma. doi:https://doi.org/10.1007/s42114-021-00369-z

    Article  Google Scholar 

  101. Kumar SM, Rajini N, Alavudeen A, Siengchin S, Rajulu AV, Ayrilmis N (2021) Development and analysis of completely biodegradable cellulose/banana peel powder composite films. J Nat Fibers 18(1):151–160. doi:https://doi.org/10.1080/15440478.2019.1612811

    Article  CAS  Google Scholar 

  102. Martinez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2012) Development of bacterial cellulose nanowhiskers reinforced EVOH composites by electrospinning. J Appl Polym Sci 124(2):1398–1408. doi:https://doi.org/10.1002/app.35052

    Article  CAS  Google Scholar 

  103. Xu YX, Liu XL, Jiang QX, Yu DW, Xu YS, Wang B, Xia WS (2021) Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2021.117778

    Article  Google Scholar 

  104. Ramesh A, Srinivasulu NV, Rani MI (2019) Development and evaluation of water absorption, compression and impact properties of okra Nanofibrillated cellulose reinforcement in epoxy resin composites. Mater Today-Proc 19:748–754. doi:https://doi.org/10.1016/j.matpr.2019.08.123

    Article  CAS  Google Scholar 

  105. Orts WJ, Medeiros ES, Glenn GM, Torres LF, Wood DF, Mattoso LHC (2011) Development of biodegradable composites, nanocomposites, and electroconductive nanowires from glycerol-based biopolymers reinforced with cellulose whiskers. Abstr Pap Am Chem S241

  106. Velasquez E, Rojas A, Pina C, Galotto MJ, de Dicastillo CL (2019) Development of bilayer biodegradable composites containing cellulose nanocrystals with antioxidant properties. Polymers-Basel. https://doi.org/10.3390/Polym11121945

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wardhono EY, Kanani N, Alfirano R (2020) Development of polylactic acid (PLA) bio-composite films reinforced with bacterial cellulose nanocrystals (BCNC) without any surface modification. J Disper Sci Technol 41(10):1488–1495. doi:https://doi.org/10.1080/01932691.2019.1626739

    Article  CAS  Google Scholar 

  108. Park H-M, Mohanty AK, Drzal LT, Lee E, Mielewski DF, Misra M (2006) Effect of sequential mixing and compounding conditions on cellulose acetate/layered silicate nanocomposites. J Polym Environ 14(1):27–35. doi:https://doi.org/10.1007/s10924-005-8704-0

    Article  CAS  Google Scholar 

  109. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8

    Article  Google Scholar 

  110. Tabugon HC, Oracion JPL, Rosa LBDL, Grumo JC, Alguno AC, Deocaris CC, Capangpangan RY (2021) Synthesis and characterization of cellulose nanocrystals extracted from sago (Methoxylon sagu) pulp. AIP Conference Proceedings 2370(1)

  111. Chuayjuljit S, Su-uthai S, Charuchinda S (2010) Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study. Waste Manage Res 28:109–117

    Article  CAS  Google Scholar 

  112. Ibrahim AN, Wahit MU, Yussuf AA (2014) Effect of fiber reinforcement on mechanical and thermal properties of poly(ɛ-caprolactone)/poly(lactic acid) blend composites. Fiber Polym 15(3):574–582. doi:https://doi.org/10.1007/s12221-014-0574-4

    Article  CAS  Google Scholar 

  113. Abou-Zeid RE, Hassan EA, Bettaieb F, Khiari R, Hassan ML (2015) Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. J Nanomater. https://doi.org/10.1155/2015/687490

    Article  Google Scholar 

  114. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  115. Pandey JK, Nakagaito AN, Takagi H (2013) Fabrication and applications of cellulose nanoparticle-based polymer composites. Polym Eng Sci 53(1):1–8. doi:https://doi.org/10.1002/pen.23242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their parent institution for providing the necessary facilities to complete the current research. No funding received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Aziz.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Aziz, T., Sun, H. et al. Advances and Applications of Cellulose Bio-Composites in Biodegradable Materials. J Polym Environ 31, 2273–2284 (2023). https://doi.org/10.1007/s10924-022-02561-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02561-8

Keywords

Navigation