Skip to main content
Log in

Multi-response Optimization of the Chemical Treatment Process Parameters Influencing the Tensile, Flexural, Compression, and Shear Properties of the Injection Moulded Green Composites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, Taguchi’s grey relational analysis (GRA) was applied to optimize the different parameters of the chemical treatment process influencing the mechanical properties of the developed green composites. Green composites namely bamboo fibre-reinforced polylactic acid composites (BF/PLA) and pineapple leaf fibre-reinforced polylactic acid composites (PLF/PLA) were fabricated by using the injection moulding process. The input parameters considered were chemical treatments (NaOH: sodium hydroxide, KOH: potassium hydroxide, and Na2CO3: sodium carbonate), chemical concentration [1, 2, and 3% (w/v)], and treatment period (2, 4, and 6 h). The mechanical behaviour of the developed green composites was evaluated by analyzing the different properties such as (a) TS: Tensile Strength, (b) TM: Tensile Modulus, (c) PET: Percentage Elongation Under Tensile Loading, (d) FS: Flexural Strength, (e) FM: Flexural Modulus, (f) PEF: Percentage Elongation Under Flexural Loading, (g) CS: Compressive Strength, and (h) SS: Shear Strength. The morphology of the tested specimens was also analyzed under different loading conditions with the help of a Scanning Electron Microscope (SEM). The optimal levels achieved from GRA and mean plots were same for both the composites. The better mechanical properties of BF/PLA and PLF/PLA were obtained at optimal levels of A1-B2-C2 (NaOH, 2%, and 4 h) and A3-B1-C3 (Na2CO3, 1%, and 6 h), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33. https://doi.org/10.1007/s10924-006-0042-3

    Article  CAS  Google Scholar 

  2. Kumar RS, Muralidharan N, Sathyamurthy R (2020) Optimization of alkali treatment process parameters for kenaf fiber: experiments design. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1856276

  3. Nurnadia MJ, Fazita MR, Abdul Khalil HPS, Mohamad Haafiz MK (2017) Optimisation of mechanical properties of bamboo fibre reinforced-PLA biocomposites. AIP Conf Proc 1901:030019. https://doi.org/10.1063/1.5010484

  4. Hassan MZ, Roslan SA, Sapuan SM, Rasid ZA, Mohd Nor AF, Md Daud MY, Mohamed Yusoff MZ (2020) Mercerization optimization of bamboo (Bambusa vulgaris) fiber-reinforced epoxy composite structures using a Box–Behnken design. Polymers 12(6):1367. https://doi.org/10.3390/polym12061367

    Article  CAS  Google Scholar 

  5. Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z, Zhou Z (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Composites Part B Eng 62:191–197. https://doi.org/10.1016/j.compositesb.2014.02.030

    Article  CAS  Google Scholar 

  6. Sumesh KR, Kanthavel K (2020) Optimizing various parameters influencing mechanical properties of banana/coir natural fiber composites using grey relational analysis and artificial neural network models. J Ind Text 51:1–23. https://doi.org/10.1177/1528083720930304

    Article  Google Scholar 

  7. Chanda B, Kumar R, Kumar K, Bhowmik S (2015) Optimisation of mechanical properties of wood dust-reinforced epoxy composite using grey relational analysis. In: Proceedings of fourth international conference on soft computing for problem solving. Springer, Singapore, pp 13–24. https://doi.org/10.1007/978-81-322-2220-0_2

  8. Young WB, Tsao YC (2015) The mechanical and fire safety properties of bamboo fiber reinforced polylactide biocomposites fabricated by injection molding. J Compos Mater 49(22):2803–2813. https://doi.org/10.1177/0021998314554437

    Article  CAS  Google Scholar 

  9. Long H, Wu Z, Dong Q, Shen Y, Zhou W, Luo Y, Dong X (2019) Effect of polyethylene glycol on mechanical properties of bamboo fiber-reinforced polylactic acid composites. J Appl Polym Sci 136(26):1–8. https://doi.org/10.1002/app.47709

    Article  CAS  Google Scholar 

  10. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43(2):775–787. https://doi.org/10.1007/s10853-007-1994-y

    Article  CAS  Google Scholar 

  11. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composites Part A Appl Sci Manuf 40(4):469–475. https://doi.org/10.1016/j.compositesa.2009.01.012

    Article  CAS  Google Scholar 

  12. Zhang S, Liang Y, Qian X, Hui D, Sheng K (2020) Pyrolysis kinetics and mechanical properties of poly (lactic acid)/bamboo particle biocomposites: effect of particle size distribution. Nanotechnol Rev 9(1):524–533. https://doi.org/10.1515/ntrev-2020-0037

    Article  CAS  Google Scholar 

  13. Fazita MR, Jayaraman K, Bhattacharyya D, Hossain M, Haafiz MK, HPS AK (2015) Disposal options of bamboo fabric-reinforced poly (lactic) acid composites for sustainable packaging: biodegradability and recyclability. Polymers 7(8):1476–1496. https://doi.org/10.3390/polym7081465

    Article  CAS  Google Scholar 

  14. Gamon G, Evon P, Rigal L (2013) Twin-screw extrusion impact on natural fibre morphology and material properties in poly (lactic acid) based biocomposites. Ind Crops Prod 46:173–185. https://doi.org/10.1016/j.indcrop.2013.01.026

    Article  CAS  Google Scholar 

  15. Yang TC, Wu TL, Hung KC, Chen YL, Wu JH (2015) Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly (lactic acid) composites using the time-temperature superposition principle. Constr Build Mater 93:558–563. https://doi.org/10.1016/j.conbuildmat.2015.06.038

    Article  Google Scholar 

  16. Subyakto S, Hermiati E, Masruchin N, Ismadi I, Prasetiyo KW, Kusumaningrum WB, Subiyanto B (2011) Injection molded of bio-micro-composites from natural fibers and polylactic acid. Wood Res J 2(1):21–26

    Article  Google Scholar 

  17. Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Study of the interface in natural fibres reinforced poly (lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494. https://doi.org/10.1016/j.indcrop.2013.11.022

    Article  CAS  Google Scholar 

  18. Porras A, Maranon A, Ashcroft IA (2016) Optimal tensile properties of a Manicaria-based biocomposite by the Taguchi method. Compos Struct 140:692–701. https://doi.org/10.1016/j.compstruct.2016.01.042

    Article  Google Scholar 

  19. Kumar PN, Rajadurai A, Muthuramalingam T (2018) Multi-response optimization on mechanical properties of silica fly ash filled polyester composites using Taguchi-Grey relational analysis. Silicon 10(4):1723–1729. https://doi.org/10.1007/s12633-017-9660-8

    Article  CAS  Google Scholar 

  20. Pandya VJ, Rathod PP (2020) Optimization of mechanical properties of green composites by gray relational analysis. Mater Today Proc 27:19–22. https://doi.org/10.1016/j.matpr.2019.08.166

    Article  CAS  Google Scholar 

  21. Kaewpirom S, Worrarat C (2014) Preparation and properties of pineapple leaf fiber reinforced poly (lactic acid) green composites. Fibers Polym 15(7):1469–1477. https://doi.org/10.1007/s12221-014-1469-0

    Article  CAS  Google Scholar 

  22. Munawar RF, Jamil NH, Shahril MK, Rahim SA, Muhammad S, Abidin Z, Lau KT (2015) Development of green composite: pineapple leaf fibers (PALF) reinforced polylactide (PLA). Appl Mech Mater 761:520–525. https://doi.org/10.4028/www.scientific.net/AMM.761.520

    Article  Google Scholar 

  23. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2019) Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos 40(5):2000–2011. https://doi.org/10.1002/pc.24978

    Article  CAS  Google Scholar 

  24. Onyekwere OS, Oladeinde MH, Edokpia RO (2021) Multi-response optimization of bamboo fiber reinforced unsaturated polyester composites using hybrid Taguchi–Grey relational analysis method. J Ind Prod Eng 38(2):98–107. https://doi.org/10.1080/21681015.2020.1848933

    Article  Google Scholar 

  25. Nor AFM, Hassan MZ, Rasid ZA, Aziz SAA, Sarip S, Md Daud MY (2021) Optimization on tensile properties of kenaf/multi-walled CNT hybrid composites with Box–Behnken design. Appl Compos Mater 28(3):607–632. Doi:https://doi.org/10.1007/s10443-021-09879-x

    Article  CAS  Google Scholar 

  26. Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19(5):1449–1480. https://doi.org/10.1007/s10570-012-9741-1

    Article  CAS  Google Scholar 

  27. Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z (2019) Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinforced Plastics Composites 38(1):15–30. https://doi.org/10.1177/0731684418802022

    Article  CAS  Google Scholar 

  28. Ahmad R, Hamid R, Osman SA (2019) Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Adv Civ Eng 2019:1–18. https://doi.org/10.1155/2019/5185806

    Article  Google Scholar 

  29. Supian ABM, Jawaid M, Rashid B, Fouad H, Saba N, Dhakal HN, Khiari R (2021) Mechanical and physical performance of date palm/bamboo fibre reinforced epoxy hybrid composites. J Mater Res Technol 15:1330–1341. https://doi.org/10.1016/j.jmrt.2021.08.115

    Article  CAS  Google Scholar 

  30. Lin J, Yang Z, Hu X, Hong G, Zhang S, Song W (2018) The effect of alkali treatment on properties of dopamine modification of bamboo fiber/polylactic acid composites. Polymers 10(4):1–12. https://doi.org/10.3390/polym10040403

    Article  CAS  Google Scholar 

  31. Kumar SR, Muralidharan ND (2020) Mechanical characteristics study of chemically modified Kenaf fiber reinforced epoxy composites. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1818350

  32. Williams T, Hosur M, Theodore M, Netravali A, Rangari V, Jeelani S (2011) Time effects on morphology and bonding ability in mercerized natural fibers for composite reinforcement. Int J Polym Sci 2011:1–9. https://doi.org/10.1155/2011/192865

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SRG performed writing—original draft preparation, methodology, and conceptualization. KD accomplished supervision, writing—reviewing and editing, methodology, and conceptualization. RNM performed writing—reviewing and editing.

Corresponding author

Correspondence to Surya Rao Gorrepotu.

Ethics declarations

Conflict of interest

All authors declare no financial or personal conflicts of interest influencing the work reported in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorrepotu, S.R., Debnath, K. & Mahapatra, R.N. Multi-response Optimization of the Chemical Treatment Process Parameters Influencing the Tensile, Flexural, Compression, and Shear Properties of the Injection Moulded Green Composites. J Polym Environ 31, 112–130 (2023). https://doi.org/10.1007/s10924-022-02613-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02613-z

Keywords

Navigation