Skip to main content
Log in

Tailored Functionalization of Gum Arabic Iron (II) Complexes: Synthesis, Characterization and Dwindling of Antianemic Approach via In Vivo Studies

  • OriginalPaper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, we performed the chemical functionalization of gum arabic by sodium periodate to produce aldehyde groups that were then converted to carboxyl groups via successive oxidation with sodium chlorite. The periodate-chlorite oxidized gum arabic was further reacted with ferrous sulphate solution to produce the iron salt of the carboxylated gum. Standard analytical techniques such as FT-IR, 1H-NMR, TGA, DSC, SEM, and XRD were used to characterize the functionalized OGA, OOGA and Fe-OOGA. The swelling study revealed that the GA derivatives OGA and OOGA swell the most in water (90%, 85%), then in simulated intestinal fluid; SIF (81%, 64%), and the least in simulated gastric fluid; SGF (75%, 60%). In all media, Fe-OOGA exhibited the same swelling trend, but an increase in swelling percentage was observed up to two hours, followed by a gradual decrease due to co-ordination around these metal ions, which results in shrinkage of polysaccharide chains and prevents water uptake. Furthermore, the iron release profile was investigated, and the results revealed that the maximum iron release from the Fe-OOGA complex was obtained in the SIF (86.4%) followed by HCl (82.1%) and the least was observed in SGF (76.1%). The ameliorative effect of the new functionalized gum arabic iron complexes was investigated on male albino rats. The results have shown that these iron complexes may potentially improve some hematological parameters in rats with iron deficiency anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pomogailo AD, Wöhrle D (1996) Synthesis and structure of macromolecular metal complexes. In: Ciardelli F, Tsuchida E, Wöhrle D (eds) Macromolecule-metal complexes. Springer, Berlin, Heidelberg, pp 11–129. https://doi.org/10.1007/978-3-642-60986-2_2

    Chapter  Google Scholar 

  2. Rendleman JA (1978) Metal-polysaccharide complexes—part I. Food Chem 3(1):47–79. https://doi.org/10.1016/0308-8146(78)90047-X

    Article  CAS  Google Scholar 

  3. Steinborn D, Junicke H (2000) Carbohydrate complexes of platinum-group metals. Chem Rev 100(12):4283–4318. https://doi.org/10.1021/cr9903050

    Article  CAS  PubMed  Google Scholar 

  4. Ma X, Jing J, Yu J, Wang J, Zhu H, Hu Z (2021) Synthesis and characterization of a novel apple pectin–Fe(III) complex. ACS Omega 6(2):1391–1399. https://doi.org/10.1021/acsomega.0c05029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeon C, Höll WH (2004) Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan. Hydrometallurgy 71(3–4):421–428. https://doi.org/10.1016/S0304-386X(03)00118-X

    Article  CAS  Google Scholar 

  6. Sibikina OV, Iozep AA, Moskvin AV (2009) Polysaccharide complexes with metal cations: structure and application (a review). Pharm Chem J 43(6):341–345. https://doi.org/10.1007/s11094-009-0292-1

    Article  CAS  Google Scholar 

  7. Wu C-Y, Suen S-Y, Chen S-C, Tzeng J-H (2003) Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes. J Chromatogr A 996(1–2):53–70. https://doi.org/10.1016/S0021-9673(03)00531-4

    Article  CAS  PubMed  Google Scholar 

  8. Latorre-Esteves M, Cortés A, Torres-Lugo M, Rinaldi C (2009) Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. J Magn Magn Mater 321(19):3061–3066. https://doi.org/10.1016/j.jmmm.2009.05.023

    Article  CAS  Google Scholar 

  9. Das D, Pal S (2015) Modified biopolymer-dextrin based crosslinked hydrogels: application in controlled drug delivery. RSC Adv 5(32):25014–25050. https://doi.org/10.1039/C4RA16103C

    Article  CAS  Google Scholar 

  10. Cheng C, Huang D, Zhao L, Cao C, Chen G (2019) Preparation and in vitro absorption studies of a novel polysaccharide-iron (III) complex from flammulina velutipes. Int J Biol Macromol 132:801–810. https://doi.org/10.1016/j.ijbiomac.2019.04.015

    Article  CAS  PubMed  Google Scholar 

  11. Ahmed M, Mamba S, Yang X-H, Darkwa J, Kumar P, Narain R (2013) Synthesis and evaluation of polymeric gold glyco-conjugates as anti-cancer agents. Bioconj Chem 24(6):979–986. https://doi.org/10.1021/bc4000993

    Article  CAS  Google Scholar 

  12. Giammanco GE, Sosnofsky CT, Ostrowski AD (2015) Light-responsive iron(III)–polysaccharide coordination hydrogels for controlled delivery. ACS Appl Mater Interfaces 7(5):3068–3076. https://doi.org/10.1021/am506772x

    Article  CAS  PubMed  Google Scholar 

  13. Luo Z, Cheng W, Chen H, Fu X, Peng X, Luo F, Nie L (2013) Preparation and properties of enzyme-modified cassava starch-zinc complexes. J Agric Food Chem 61(19):4631–4638. https://doi.org/10.1021/jf4016015

    Article  CAS  PubMed  Google Scholar 

  14. Liu S, Liu G, Yi Y (2015) Novel vanadyl complexes of alginate saccharides: synthesis, characterization, and biological activities. Carbohydr Polym 121:86–91. https://doi.org/10.1016/j.carbpol.2014.11.069

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Gao X, Chen Z, Chen Y, Chen H (2017) Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers 9(12):689. https://doi.org/10.3390/polym9120689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gericke M, Schulze P, Heinze T (2020) Nanoparticles based on hydrophobic polysaccharide derivatives—formation principles, characterization techniques, and biomedical applications. Macromol Biosci 20(4):1900415. https://doi.org/10.1002/mabi.201900415

    Article  CAS  Google Scholar 

  17. Huang K, Xue L, Huang M-Y, Jiang Y-Y (2002) Catalytic behaviors of silica-supported methylcellulose-L-phenyl alanine-platinum complexes in asymmetric hydrogenation of diacetone alcohol. Polym Adv Technol 13(3–4):165–168. https://doi.org/10.1002/pat.168

    Article  CAS  Google Scholar 

  18. Zharmagambetova AK, Auyezkhanova AS, Talgatov ET, Akhmetova SN, Tumabayev NZ, Rafikova KS (2020) Polysaccharide-stabilized nanocatalysts in hydrogenation of phenylacetylene. Theor Exp Chem 56(1):39–45. https://doi.org/10.1007/s11237-020-09638-2

    Article  CAS  Google Scholar 

  19. Tang M, Wang D, Hou Y, Buchili P, Sun L (2013) Preparation, characterization, bioavailability in vitro and in vivo of tea polysaccharides-iron complex. Eur Food Res Technol 236(2):341–350. https://doi.org/10.1007/s00217-012-1891-8

    Article  CAS  Google Scholar 

  20. Zhang Z-S, Wang X-M, Han Z-P, Yin L, Zhao M-X, Yu S-C (2012) Physicochemical properties and inhibition effect on iron deficiency anemia of a novel polysaccharide-iron complex (LPPC). Bioorg Med Chem Lett 22(1):489–492. https://doi.org/10.1016/j.bmcl.2011.10.100

    Article  CAS  PubMed  Google Scholar 

  21. Rao CP, Geetha K, Raghavan MS, Sreedhara A, Tokunaga K, Yamaguchi T, Jadhav V, Ganesh KN, Krishnamoorthy T, Ramaiah KV, Bhattacharyya RK (2000) Transition metal saccharide chemistry and biology: syntheses, characterization, solution stability and putative bio-relevant studies of iron-saccharide complexes. Inorg Chim Acta 297(1–2):373–382. https://doi.org/10.1016/S0020-1693(99)00364-3

    Article  CAS  Google Scholar 

  22. Minzanova ST, Mironov VF, Vyshtakalyuk AB, Tsepaeva OV, Mindubaev AZ, Mironova LG, Gubaidullin AT, Zobov VV, Lantsova AV, Petrova GR, Ziatdinova FK, Konovalov AI (2010) Production of pectin polysaccharide complexes with dicarboxylic acids. Dokl Chem 434(1):249–252. https://doi.org/10.1134/S0012500810090107

    Article  CAS  Google Scholar 

  23. Raja KB, Jafri SE, Dickson D, Acebròn A, Cremonesi P, Fossati G, Simpson RJ (2008) Involvement of iron (ferric) reduction in the iron absorption mechanism of a trivalent iron-protein complex (iron protein succinylate. Pharmacol Toxicol 87(3):108–115. https://doi.org/10.1034/j.1600-0773.2000.pto870302.x

    Article  Google Scholar 

  24. Jacobs P (1987) Equivalent bioavailability of iron from ferrous salts and a ferric polymaltose complex. Clinical and experimental studies. Arzneimittelforschung 37(1A):113–116

    CAS  PubMed  Google Scholar 

  25. Santiago P (2012) Ferrous versus ferric oral iron formulations for the treatment of iron deficiency: a clinical overview. Sci World J 2012:1–5. https://doi.org/10.1100/2012/846824

    Article  CAS  Google Scholar 

  26. Masuelli MA (2013) Hydrodynamic properties of whole arabic gum. Am J Food Sci Technol 1(3):60–66

    Google Scholar 

  27. Nishi KK, Jayakrishnan A (2004) Preparation and in vitro evaluation of primaquine-conjugated gum arabic microspheres. Biomacromol 5(4):1489–1495. https://doi.org/10.1021/bm0499435

    Article  CAS  Google Scholar 

  28. Liimatainen H, Visanko M, Sirviö JA, Hormi OEO, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromol 13(5):1592–1597. https://doi.org/10.1021/bm300319m

    Article  CAS  Google Scholar 

  29. Gupta B, Tummalapalli M, Deopura BL, Alam MS (2013) Functionalization of pectin by periodate oxidation. Carbohydr Polym 98(1):1160–1165. https://doi.org/10.1016/j.carbpol.2013.06.069

    Article  CAS  PubMed  Google Scholar 

  30. Mei Xu, Dia H, Sun H, Wang S, Weibing Wu (2012) Influence of buffer solution on tempo mediated oxidation. BioResources 7(2):1633–1642

    Google Scholar 

  31. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491. https://doi.org/10.1021/bm0703970

    Article  CAS  Google Scholar 

  32. Camy S, Montanari S, Rattaz A, Vignon M, Condoret J-S (2009) Oxidation of cellulose in pressurized carbon dioxide. J Supercrit Fluids 51(2):188–196. https://doi.org/10.1016/j.supflu.2009.09.001

    Article  CAS  Google Scholar 

  33. Li H, Wu B, Mu C, Lin W (2011) Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydr Polym 84(3):881–886. https://doi.org/10.1016/j.carbpol.2010.12.026

    Article  CAS  Google Scholar 

  34. Pan X, Li J, Gan R, Hu X (2015) Preparation and in vitro evaluation of enteric-coated tablets of rosiglitazone sodium. Saudi Pharm J 23(5):581–586. https://doi.org/10.1016/j.jsps.2015.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  35. Agustina E, Goak J, Lee S, Seo Y, Park J-Y, Lee N (2015) Simple and precise quantification of iron catalyst content in carbon nanotubes using UV/visible spectroscopy. ChemistryOpen 4(5):613–619. https://doi.org/10.1002/open.201500096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duvallet S, Fenyo JC, Vandevelde MC (1989) Meaning of molecular weight measurements of gum arabic. Polym Bull 21:517–521

    Article  CAS  Google Scholar 

  37. Wang K-P, Chen Z-X, Zhang Y, Wang P-P, Wang J-H, Dai L-Q (2008) Molecular weight and proposed structure of the angelica sinensis polysaccharide-iron complex. Chin J Chem 26(6):1068–1074. https://doi.org/10.1002/cjoc.200890189

    Article  CAS  Google Scholar 

  38. Ciobanu CS, Iconaru SL, Gyorgy E, Radu M, Costache M, Dinischiotu A, Le Coustumer P, Lafdi K, Predoi D (2012) Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique. Chem Cent J 6(1):17. https://doi.org/10.1186/1752-153X-6-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Serrero A, Trombotto S, Cassagnau P, Bayon Y, Gravagna P, Montanari S, David L (2010) Polysaccharide gels based on chitosan and modified starch: structural characterization and linear viscoelastic behavior. Biomacromol 11(6):1534–1543. https://doi.org/10.1021/bm1001813

    Article  CAS  Google Scholar 

  40. Zhang Y-R, Wang X-L, Zhao G-M, Wang Y-Z (2012) Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym 87(4):2554–2562. https://doi.org/10.1016/j.carbpol.2011.11.036

    Article  CAS  Google Scholar 

  41. Gutiérrez TJ, Alvarez VA (2017) Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. React Funct Polym 112:33–44. https://doi.org/10.1016/j.reactfunctpolym.2017.01.002

    Article  CAS  Google Scholar 

  42. Kumar V, Yang T (2002) HNO3/H3PO4–NANO2 mediated oxidation of cellulose—preparation and characterization of bioabsorbable oxidized celluloses in high yields and with different levels of oxidation. Carbohydr Polym 48(4):403–412. https://doi.org/10.1016/S0144-8617(01)00290-9

    Article  CAS  Google Scholar 

  43. Vadivel T, Dhamodaran M (2016) Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base. Int J Biol Macromol 90:44–52. https://doi.org/10.1016/j.ijbiomac.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  44. de Araújo EL, Barbosa HFG, Dockal ER, Cavalheiro ÉTG (2017) Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric schiff bases of salicylaldehydes and chitosan. Int J Biol Macromol 95:168–176. https://doi.org/10.1016/j.ijbiomac.2016.10.109

    Article  CAS  PubMed  Google Scholar 

  45. Doyle CD (1961) Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem 33(1):77–79. https://doi.org/10.1021/ac60169a022

    Article  CAS  Google Scholar 

  46. Aseeva RM, Sakharov PA, Sakharov AM (2009) The physicochemical characteristics of oxidized polysaccharides. Russ J Phys Chem B 3(5):844–850. https://doi.org/10.1134/S1990793109050224

    Article  Google Scholar 

  47. Zhang S-D, Wang X-L, Zhang Y-R, Yang K-K, Wang Y-Z (2010) Preparation of a new dialdehyde starch derivative and investigation of its thermoplastic properties. J Polym Res 17(3):439–446. https://doi.org/10.1007/s10965-009-9330-7

    Article  CAS  Google Scholar 

  48. Chetouani A, Follain N, Marais S, Rihouey C, Elkolli M, Bounekhel M, Benachour D, Le Cerf D (2017) Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int J Biol Macromol 97:348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  49. Sreenivasan K (1996) Thermal stability studies of some chitosanmetal ion complexes using differential scanning calorimetry. Polym Degrad Stab 52(1):85–87. https://doi.org/10.1016/0141-3910(95)00220-0

    Article  CAS  Google Scholar 

  50. Mohammed AME (2017) Estimation of the active components in gum arabic collected from Western Sudan. Int J Sci Res 6(3):1262–1282

    Google Scholar 

  51. Almuslet NA, Hassan EA, Al-Sherbini AS, Muhgoub MA (2012) Diode laser (532 Nm) induced grafting of polyacrylamide onto gum arabic. J Phys Sci 23(2):43–53

    Google Scholar 

  52. Gulão ED, de Souza CJ, da Silva FA, Coimbra JS, Garcia-Rojas EE (2014) Complex coacervates obtained from lactoferrin and gum arabic: formation and characterization. Food Res Int 65:367–374. https://doi.org/10.1016/j.foodres.2014.08.024

    Article  CAS  Google Scholar 

  53. Park H-Y, Choi C-R, Kim J-H, Kim W-S (1998) Effect of PH on drug release from polysaccharide tablets. Drug Deliv 5(1):13–18. https://doi.org/10.3109/10717549809052022

    Article  CAS  PubMed  Google Scholar 

  54. Kennedy JF, Phillips GO, Hyaluronan PAW (2002). In: Tab T (ed) Hyaluronan volume 1—chemical, biochemical and biological aspects. Elsevier, Amsterdam, pp 571–577. https://doi.org/10.14314/polimery.2010.839

    Chapter  Google Scholar 

  55. Vasiliu S, Racovita S, Neagu V, Popa M, Desbrieres J (2010) Polymer-metal complexes based on gellan. Polimery 55(1112):839–845. https://doi.org/10.14314/polimery.2010.839

    Article  CAS  Google Scholar 

  56. Rashid S, Shen C, Yang J, Liu J, Li J (2018) Preparation and properties of chitosan-metal complex: some factors influencing the adsorption capacity for dyes in aqueous solution. J Environ Sci 66:301–309. https://doi.org/10.1016/j.jes.2017.04.033

    Article  CAS  Google Scholar 

  57. Tang N, Chen L, Zhuang H (2014) Effects of heme iron enriched peptide on iron deficiency anemia in rats. Food Funct 5(2):390–399. https://doi.org/10.1039/C3FO60292C

    Article  CAS  PubMed  Google Scholar 

  58. Polin V, Coriat R, Perkins G, Dhooge M, Abitbol V, Leblanc S, Prat F, Chaussade S (2013) Iron deficiency: from diagnosis to treatment. Dig Liver Dis 45(10):803–809. https://doi.org/10.1016/j.dld.2013.02.019

    Article  CAS  PubMed  Google Scholar 

  59. Cui J, Li Y, Yu P, Zhan Q, Wang J, Chi Y, Wang P (2018) A novel low molecular weight enteromorpha polysaccharide-iron (III) complex and its effect on rats with iron deficiency anemia (IDA). Int J Biol Macromol 108:412–418. https://doi.org/10.1016/j.ijbiomac.2017.12.033

    Article  CAS  PubMed  Google Scholar 

  60. Xiao C, Lei X, Wang Q, Du Z, Jiang L, Chen S, Zhang M, Zhang H, Ren F (2016) Effects of a tripeptide iron on iron-deficiency anemia in rats. Biol Trace Elem Res 169(2):211–217. https://doi.org/10.1007/s12011-015-0412-6

    Article  CAS  PubMed  Google Scholar 

  61. Minzanova ST, Mironov VF, Vyshtakalyuk AB, Tsepaeva OV, Mironova LG, Mindubaev AZ, Nizameev IR, Kholin KV, Milyukov VA (2015) Complexation of pectin with macro- and microelements. Antianemic activity of Na, Fe and Na, Ca, Fe complexes. Carbohydr Polym 134:524–533. https://doi.org/10.1016/j.carbpol.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  62. Ganie SA, Naik RA, Ali A, Mir TA, Mazumdar N (2021) Preparation, characterization, release and antianemic studies of guar gum functionalized iron complexes. Int J Biol Macromol 183:1495–1504. https://doi.org/10.1016/j.ijbiomac.2021.05.125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Showkat Ali Ganie and Akbar Ali would like to thank University Grants Commission, New Delhi, India for awarding SRF fellowships. Rayees Ahmad Naik would like to thank Indian Council of Medical Research India for awarding SRF fellowships. Support of this study provided by Southwest University Chongqing, China as Postdoctoral Fellows for Showkat Ali Ganie

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Showkat Ali Ganie: conceived, designed and performed the experiments. Tariq Ahmad Mir: wrote the manuscript. Akbar Ali: analyzed the data. Rayees Ahmad Naik: carried out the biologicial work. Nasreen Mazumdar: conceptualization and review. Qing Li: Supervision, methodology, editing and conceptualization. All authors helped to finish the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Qing Li.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2223 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganie, S.A., Naik, R.A., Mir, T.A. et al. Tailored Functionalization of Gum Arabic Iron (II) Complexes: Synthesis, Characterization and Dwindling of Antianemic Approach via In Vivo Studies. J Polym Environ 31, 2448–2461 (2023). https://doi.org/10.1007/s10924-023-02757-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02757-6

Keywords

Navigation