Skip to main content
Log in

Aldehyde Production as a Calibrant of Ultrasonic Power Delivery During Protein Misfolding Cyclic Amplification

  • Published:
The Protein Journal Aims and scope Submit manuscript

A Correction to this article was published on 06 January 2021

This article has been updated

Abstract

The protein misfolding cyclic amplification (PMCA) technique employs repeated cycles of incubation and sonication to amplify minute amounts of misfolded protein conformers. Spontaneous (de novo) prion formation and ultrasonic power level represent two potentially interrelated sources of variation that frustrate attempts to replicate results from different laboratories. We previously established that water splitting during PMCA provides a radical-rich environment leading to oxidative damage to substrate molecules as well as the polypropylene PCR tubes used for sample containment. Here it is shown that the cross-linking agent formaldehyde is generated from buffer ions that are attacked by hydroxyl radicals. In addition, free radical damage to protein, nucleic acid, lipid, and detergent molecules produces a substantial concentration of aldehydes (hundreds of micromolar). The measurement of aldehydes using the Hantzsch reaction provides a reliable and inexpensive method for measuring the power delivered to individual PMCA samples, and for calibrating the power output characteristics of an individual sonicator. The proposed method may also be used to better account for inter-assay and inter-laboratory variation in prion replication and de novo prion generation, the latter of which may correlate with aldehyde-induced cross-linking of substrate molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Morales R, Duran-Aniotz C, Diaz-Espinoza R, Camacho MV, Soto C (2012) Protein misfolding cyclic amplification of infectious prions. Nat Protoc 7:1397–1409

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee KS, Caughey B (2007) A simplified recipe for prions. Proc Natl Acad Sci USA 104:9551–9552

    CAS  PubMed  Google Scholar 

  3. Wang F, Wang X, Yuan C-G, Ma J (2010) Generating a prion with bacterially expressed recombinant prion protein. Science 327:1132–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang F, Wang X, Ma J (2011) Conversion of bacterially expressed recombinant prion protein. Methods 53:208–213

    CAS  PubMed  Google Scholar 

  5. Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, Yu G, Yuan C, Ma J (2013) De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB J 27:4768–4775

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang F, Zhang Z, Wang X, Li J, Zha L, Yuan CG, Weissmann C, Ma J (2012) Genetic informational RNA is not required for recombinant prion infectivity. J Virol 86:1874–1876

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JI, Cali I, Surewicz K, Kong Q, Raymond GJ, Atarashi R, Race B, Qing L, Gambetti P, Caughey B, Surewicz WK (2010) Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J Biol Chem 285:14083–14087

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Deleault NR, Piro JR, Walsh DJ, Wang F, Ma J, Geoghegan JC, Supattapone S (2012) Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc Natl Acad Sci USA 109:8546–8551

    CAS  PubMed  Google Scholar 

  9. Haigh CL, Drew SC (2015) Cavitation during the protein misfolding cyclic amplification (PMCA) method—the trigger for de novo prion generation? Biochem Biophys Res Commun 461:494–500

    CAS  PubMed  Google Scholar 

  10. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Belman S (1963) The fluorometric determination of formaldehyde. Anal Chim Acta 29:120–126

    CAS  Google Scholar 

  12. Li Q, Sritharathikhun P, Motomizu S (2007) Development of novel reagent for Hantzsch reaction for the determination of formaldehyde by spectrophotometry and fluorometry. Anal Sci 23:413–417

    PubMed  Google Scholar 

  13. Wobbrock J, Findlater L, Gergle D, Higgins J (2011) The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In: Proceedings of the ACM conference on human factors in computing systems (CHI 2011), Vancouver, British Columbia (May 7–12). New York: ACM Press, pp 143–146. https://depts.washington.edu/aimgroup/proj/art/. https://doi.org/10.1145/1978942.1978963

  14. Shiraishi H, Kataoka M, Morita Y, Umemoto J (1993) Interactions of hydroxyl radicals with tris (hydroxymethyl) aminomethane and Good’s buffers containing hydroxymethyl or hydroxyethyl residues produce formaldehyde. Free Radic Res Commun 19:315–321

    CAS  PubMed  Google Scholar 

  15. McElroy WJ, Waygood SJ (1991) Oxidation of formaldehyde by the hydroxyl radical in aqueous solution. J Chem Soc Faraday Trans 87:1513–1521

    CAS  Google Scholar 

  16. Neppiras EA (1980) Acoustic cavitation thresholds and cyclic processes. Ultrasonics 18:201–209

    Google Scholar 

  17. Santos HM, Lodeiro C, Capelo-Martinez J-L (2009) The power of ultrasound. In: Capelo-Martínez J-L (ed) Ultrasound in chemistry: analytical applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  18. Barria MA, Gonzalez-Romero D, Soto C (2012) Cyclic amplification of prion protein misfolding. Methods Mol Biol 849:199–212

  19. Park J-H, Choi Y-G, Park S-J, Choi H-S, Choi E-K, Kim Y-S (2018) Ultra-efficient amplification of abnormal prion protein by modified protein misfolding cyclic amplification with electric current. Mol Neurobiol 55:1630–1638

    CAS  PubMed  Google Scholar 

  20. Alegria AE, Lion Y, Kondo T, Riesz P (1989) Sonolysis of aqueous surfactant solutions, probing the interfacial region of cavitation bubbles by spin trapping. J Phys Chem 93:4908–4913

    CAS  Google Scholar 

  21. von Sonntag C (2006) Free-radical-induced DNA damage and its repair—a chemical perspective. Springer, Berlin

    Google Scholar 

  22. Munter R (2001) Advanced oxidation processes—current status and prospects. Proc Estonian Acad Sci Chem 50:59–80

    CAS  Google Scholar 

  23. Adewuyi YG (2005) Sonochemistry in environmental remediation. 1. Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:3409–3420

    CAS  PubMed  Google Scholar 

  24. Adewuyi YG (2005) Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ Sci Technol 39:8557–8570

    CAS  PubMed  Google Scholar 

  25. Perkowski J, Mayer J, Kos L (2005) Reactions of non-ionic surfactants, Triton X-n type, with OH radicals: a review. Fibres Text East Eur 13:81–85

    CAS  Google Scholar 

  26. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    CAS  PubMed  Google Scholar 

  27. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    CAS  PubMed  Google Scholar 

  28. Talpaert-Borlè M (1987) Formation, detection and repair of AP sites. Mutat Res 181:45–56

    PubMed  Google Scholar 

  29. Zhang X, Barraza KM, Beauchamp JL (2018) Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. Proc Natl Acad Sci USA 115:3255–3260

    CAS  PubMed  Google Scholar 

  30. Höbel B, von Sonntag C (1998) OH-radical induced degradation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution: a pulse radiolysis study. J Chem Soc Perkin Trans 2:509–514

    Google Scholar 

  31. McGhee JD, von Hippel PH (1975) Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry 14:1281–1296

    CAS  PubMed  Google Scholar 

  32. McGhee JD, von Hippel PH (1975) Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry 14:1297–1303

    CAS  PubMed  Google Scholar 

  33. Hemminki K, Suni R (1984) Sites of reaction of glutaraldehyde and acetaldehyde with nucleosides. Arch Toxicol 55:186–190

    CAS  PubMed  Google Scholar 

  34. McMurray JE (2012) Organic chemistry, 8th edn. Brooks/Cole, Belmont

    Google Scholar 

  35. Feldman MY (1973) Reactions of nucleic acids and nucleoproteins with formaldehyde. Prog Nucleic Acids Res Mol Biol 13:1–49

    CAS  Google Scholar 

  36. Chaw YFM, Crane LE, Lange P, Shapiro R (1980) Isolation and identification of cross-links from formaldehyde-treated nucleic acids. Biochemistry 19:5525–5531

    CAS  PubMed  Google Scholar 

  37. Kuykendall JR, Bogdanffy MS (1994) Formation and stability of acetaldehyde-induced crosslinks between poly-lysine and poly-deoxyguanosine. Mutat Res 311:49–56

    CAS  PubMed  Google Scholar 

  38. Shaham J, Bomstein Y, Meltzer A, Kaufman Z, Palma E, Ribak J (1996) DNA-protein crosslinks, a biomarker of exposure to formaldehyde—in vitro and in vivo studies. Carcinogenesis 17:121–125

    CAS  PubMed  Google Scholar 

  39. Han Y, Shchukin D, Schneider J, Möhwald H (2014) Fluorescence indicative pH drop in sonication. Colloids Surf A Physicochem Eng Asp 445:30–33

    CAS  Google Scholar 

  40. Mark G, Schuchmann H-P, von Sonntag C (2000) Formation of peroxynitrite by sonication of aerated water. J Am Chem Soc 122:3781–3782

    CAS  Google Scholar 

  41. Swietnicki W, Petersen R, Gambetti P, Surewicz WK (1997) pH-dependent stability and conformation of the recombinant human prion protein PrP(90–231). J Biol Chem 272:27517–27520

    CAS  PubMed  Google Scholar 

  42. Arnold JE, Tipler C, Laszlo L, Hope J, Landon M, Mayer RJ (1995) The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain. J Pathol 176:403–411

    CAS  PubMed  Google Scholar 

  43. Borchelt DR, Taraboulos A, Prusiner SB (1992) Evidence for synthesis of scrapie prion proteins in the endocytic pathway. J Biol Chem 267:16188–16199

    CAS  PubMed  Google Scholar 

  44. Tretyakova NY, Groehler A IV, Ji S (2015) DNA-protein cross-links: formation, structural identities, and biological outcomes. Acc Chem Res 48:1631–1644

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Klunk WE, Pettegrew JW (1990) Alzheimer’s beta-amyloid protein is covalently modified when dissolved in formic acid. J Neurochem 54:2050–2056

    CAS  PubMed  Google Scholar 

  47. Shishodia S, Zhang D, El-Sagheer AH, Brown T, Claridge TDW, Schofield CJ, Hopkinson RJ (2018) NMR analyses on N-hydroxymethylated nucleobases—implications for formaldehyde toxicity and nucleic acid demethylases. Org Biomol Chem 16:4021–4032

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Edrissi B, Taghizadeh K, Dedon PC (2013) Quantitative analysis of histone modifications: formaldehyde is a source of pathological N6-formyllysine that is refractory to histone deacetylases. PLoS Genet 9:e1003328

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR (2010) Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen 51:181–191

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Su T, Monte WC, Hu X, He Y, He R (2016) Formaldehyde as a trigger for protein aggregation and potential target for mitigation of age-related, progressive cognitive impairment. Curr Top Med Chem 16:472–484

    CAS  PubMed  Google Scholar 

  51. Green AJE (2019) RT-QuIC: a new test for sporadic CJD. Pract Neurol 19:49–55

    PubMed  Google Scholar 

  52. Raymond GJ, Race B, Orrú CD, Raymond LD, Bongianni M, Fiorini M, Groveman BR, Ferrari S, Sacchetto L, Hughson AG, Monaco S, Pocchiari M, Zanusso G, Caughey B (2020) Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC product. Ann Clin Transl Neurol 7:932–944

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156

    CAS  PubMed  Google Scholar 

  54. Ashokkumar M, Niblett T, Tantiongco L, Grieser F (2003) Sonochemical degradation of sodium dodecylbenzene sulfonate in aqueous solutions. Aust J Chem 56:1045–1049

    CAS  Google Scholar 

  55. Merouani S, Hamdaoui O, Saoudi F, Chiha M (2010) Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. J Hazard Mater 178:1007–1014

    CAS  PubMed  Google Scholar 

  56. Yamaguchi K, Matsumoto T, Kuwata K (2012) Proper calibration of ultrasonic power enabled the quantitative analysis of the ultrasonication-induced amyloid formation process. Protein Sci 21:38–49

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant awarded by the Australian Creutzfeldt–Jakob Disease Support Group Network (CJDSGN) in memory of Silva Coelho, and a grant awarded by the CJDSGN in memory of Frank Burton, Bassil Gianniodis, Primo Monaci, Rhonda Sanders, Cesarina Stilla, Ross Glasscock and others lost to CJD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon C. Drew.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drew, S.C. Aldehyde Production as a Calibrant of Ultrasonic Power Delivery During Protein Misfolding Cyclic Amplification. Protein J 39, 501–508 (2020). https://doi.org/10.1007/s10930-020-09920-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09920-1

Keywords

Navigation