Skip to main content

Advertisement

Log in

Neglected N-Truncated Amyloid-β Peptide and Its Mixed Cu–Zn Complexes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Amyloid-β (Aβ) peptides are involved in Alzheimer’s disease (AD) development. The interactions of these peptides with copper and zinc ions also seem to be crucial for this pathology. Although Cu(II) and Zn(II) ions binding by Aβ peptides has been scrupulously investigated, surprisingly, this phenomenon has not been so thoroughly elucidated for N-truncated Aβ4−x—probably the most common version of this biomolecule. This negligence also applies to mixed Cu–Zn complexes. From the structural in silico analysis presented in this work, it appears that there are two possible mixed Cu–Zn(Aβ4−x) complexes with different stoichiometries and, consequently, distinct properties. The Cu–Zn(Aβ4−x) complex with 1:1:1 stoichiometry may have a neuroprotective superoxide dismutase-like activity. On the other hand, another mixed 2:1:2 Cu–Zn(Aβ4−x) complex is perhaps a seed for toxic oligomers. Hence, this work proposes a novel research direction for our better understanding of AD development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Maynard CJ, Bush AI, Masters CL et al (2005) Metals and amyloid-β in Alzheimer’s disease. Int J Exp Pathol 86:147–159. https://doi.org/10.1111/j.0959-9673.2005.00434.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walsh DM, Selkoe DJ (2020) Amyloid β-protein and beyond: the path forward in Alzheimer’s disease. Curr Opin Neurobiol 61:116–124. https://doi.org/10.1016/j.conb.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Drew SC (2017) The case for abandoning therapeutic chelation of copper ions in Alzheimer’s disease. Front Neurosci 11:317. https://doi.org/10.3389/fnins.2017.00317

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kepp KP (2016) Alzheimer’s disease due to loss of function: a new synthesis of the available data. Prog Neurobiol 143:36–60. https://doi.org/10.1016/j.pneurobio.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  5. Lei P, Ayton S, Bush AI (2021) The essential elements of Alzheimer’s disease. J Biol Chem 296:100105. https://doi.org/10.1074/jbc.REV120.008207

    Article  CAS  PubMed  Google Scholar 

  6. Faller P, Hureau C, Berthoumieu O (2013) Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg Chem 52:12193–12206. https://doi.org/10.1021/ic4003059

    Article  CAS  PubMed  Google Scholar 

  7. Wolfe MS (2019) In search of pathogenic amyloid β-peptide in familial Alzheimer’s disease. In: Progress in Molecular Biology and Translational Science, 1st ed. Elsevier Inc., pp 71–78

  8. Masters CL, Simms G, Weinman NA et al (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci U S A 82:4245–4249. https://doi.org/10.1073/pnas.82.12.4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller DL, Papayannopoulos IA, Styles J et al (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer′s Disease. Arch Biochem Biophys 301:41–52

    Article  CAS  Google Scholar 

  10. Naslund J, Schierhorn A, Hellman U et al (1994) Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci 91:8378–8382. https://doi.org/10.1073/pnas.91.18.8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis H, Beher D, Cookson N et al (2006) Quantification of Alzheimer pathology in ageing and dementia: Age-related accumulation of amyloid-β(42) peptide in vascular dementia. Neuropathol Appl Neurobiol 32:103–118. https://doi.org/10.1111/j.1365-2990.2006.00696.x

    Article  CAS  PubMed  Google Scholar 

  12. Portelius E, Bogdanovic N, Gustavsson MK et al (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193. https://doi.org/10.1007/s00401-010-0690-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moore BD, Chakrabarty P, Levites Y et al (2012) Overlapping profiles of Abeta peptides in the Alzheimer’s disease and pathological aging brains. Alzheimers Res Ther 4:18. https://doi.org/10.1186/alzrt121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fritschi SK, Langer F, Kaeser SA et al (2014) Highly potent soluble amyloid-β seeds in human Alzheimer brain but not cerebrospinal fluid. Brain 137:2909–2915. https://doi.org/10.1093/brain/awu255

    Article  PubMed  Google Scholar 

  15. Portelius E, Lashley T, Westerlund A et al (2015) Brain amyloid-beta fragment signatures in pathological ageing and Alzheimer’s disease by hybrid immunoprecipitation mass spectrometry. Neurodegener Dis 15:50–57. https://doi.org/10.1159/000369465

    Article  CAS  PubMed  Google Scholar 

  16. Wirths O, Walter S, Kraus I et al (2017) N-truncated Aβ4x peptides in sporadic Alzheimer’s disease cases and transgenic Alzheimer mouse models. Alzheimer’s Res Ther 9:80. https://doi.org/10.1186/s13195-017-0309-z

    Article  CAS  Google Scholar 

  17. Wildburger NC, Esparza TJ, Leduc RD et al (2017) Diversity of amyloid-beta proteoforms in the Alzheimer’s disease brain. Sci Rep 7:9520. https://doi.org/10.1038/s41598-017-10422-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cabrera E, Mathews P, Mezhericher E et al (2018) Aβ truncated species: implications for brain clearance mechanisms and amyloid plaque deposition. Biochim Biophys Acta - Mol Basis Dis 1864:208–225. https://doi.org/10.1016/j.bbadis.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  19. Gkanatsiou E, Portelius E, Toomey CE et al (2019) A distinct brain beta amyloid signature in cerebral amyloid angiopathy compared to Alzheimer’s disease. Neurosci Lett 701:125–131. https://doi.org/10.1016/j.neulet.2019.02.033

    Article  CAS  PubMed  Google Scholar 

  20. Zampar S, Klafki HW, Sritharen K et al (2020) N-terminal heterogeneity of parenchymal and vascular amyloid-β deposits in Alzheimer’s disease. Neuropathol Appl Neurobiol 46:673–685. https://doi.org/10.1111/nan.12637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mukherjee S, Perez KA, Lago LC et al (2021) Quantification of N-terminal amyloid-β isoforms reveals isomers are the most abundant form of the amyloid-β peptide in sporadic Alzheimer’s disease. Brain Commun. https://doi.org/10.1093/braincomms/fcab028

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shen L, Ji HF (2007) Rat’s trick to escape Alzheimer’s disease. J Biomol Struct Dyn 25:271–273. https://doi.org/10.1080/07391102.2007.10507175

    Article  CAS  PubMed  Google Scholar 

  23. Gaggelli E, Janicka-Klos A, Jankowska E et al (2008) NMR studies of the Zn2+ interactions with rat and human β-amyloid (1–28) peptides in water-micelle environment. J Phys Chem B 112:100–109. https://doi.org/10.1021/jp075168m

    Article  CAS  PubMed  Google Scholar 

  24. Alies B, Borghesani V, Noël S et al (2018) Mutations of histidine 13 to arginine and arginine 5 to glycine are responsible for different coordination sites of zinc(II) to human and murine peptides. Chem A Eur J 24:14233–14241. https://doi.org/10.1002/chem.201802759

    Article  CAS  Google Scholar 

  25. Wirths O, Zampar S, Weggen S (2019) N-terminally truncated Aβ peptide variants in Alzheimer’s Disease. In: Alzheimer’s disease. Codon Publications, pp 107–122

  26. Tõugu V, Karafin A, Zovo K et al (2009) Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-β (1–42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J Neurochem 110:1784–1795. https://doi.org/10.1111/j.1471-4159.2009.06269.x

    Article  CAS  PubMed  Google Scholar 

  27. Noy D, Solomonov I, Sinkevich O et al (2008) Zinc-amyloid β interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species. J Am Chem Soc 130:1376–1383. https://doi.org/10.1021/ja076282l

    Article  CAS  PubMed  Google Scholar 

  28. Innocenti M, Salvietti E, Guidotti M et al (2010) Trace copper(II) or zinc(II) ions drastically modify the aggregation behavior of Amyloid-β1-42: An AFM study. J Alzheimer’s Dis 19:1323–1329. https://doi.org/10.3233/JAD-2010-1338

    Article  CAS  Google Scholar 

  29. Bolognin S, Messori L, Drago D et al (2011) Aluminum, copper, iron and zinc differentially alter amyloid-Aβ1-42 aggregation and toxicity. Int J Biochem Cell Biol 43:877–885. https://doi.org/10.1016/j.biocel.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  30. Sharma AK, Pavlova ST, Kim J et al (2013) The effect of Cu2+ and Zn2+ on the Aβ42 peptide aggregation and cellular toxicity. Metallomics 5:1529. https://doi.org/10.1039/c3mt00161j

    Article  CAS  PubMed  Google Scholar 

  31. Rezaei-Ghaleh N, Giller K, Becker S, Zweckstetter M (2011) Effect of zinc binding on β-amyloid structure and dynamics: Implications for Aβ aggregation. Biophys J 101:1202–1211. https://doi.org/10.1016/j.bpj.2011.06.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang DS, McLaurin J, Qin K et al (2000) Examining the zinc binding site of the amyloid-β peptide. Eur J Biochem 267:6692–6698. https://doi.org/10.1046/j.1432-1327.2000.01767.x

    Article  CAS  PubMed  Google Scholar 

  33. Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Metal binding modes of Alzheimer’s amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemistry 39:7024–7031. https://doi.org/10.1021/bi0002479

    Article  CAS  PubMed  Google Scholar 

  34. Tsvetkov PO, Kulikova AA, Golovin AV et al (2010) Minimal Zn2+ binding site of amyloid-β. Biophys J 99:L84–L86. https://doi.org/10.1016/j.bpj.2010.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kozin SA, Mezentsev YV, Kulikova AA et al (2011) Zinc-induced dimerization of the amyloid-β metal-binding domain 1–16 is mediated by residues 11–14. Mol Biosyst 7:1053–1055. https://doi.org/10.1039/c0mb00334d

    Article  CAS  PubMed  Google Scholar 

  36. Alies B, Solari PL, Hureau C, Faller P (2012) Dynamics of ZnII binding as a key feature in the formation of amyloid fibrils by Aβ11-28. Inorg Chem 51:701–708. https://doi.org/10.1021/ic202247m

    Article  CAS  PubMed  Google Scholar 

  37. Alies B, LaPenna G, Sayen S et al (2012) Insights into the mechanisms of amyloid formation of ZnII -Ab11-28: pH-dependent zinc coordination and overall charge as key parameters for kinetics and the structure of ZnII -Ab11-28 aggregates. Inorg Chem 51:7897–7902. https://doi.org/10.1021/ic300972j

    Article  CAS  PubMed  Google Scholar 

  38. Syme CD, Viles JH (2006) Solution 1H NMR investigation of Zn2+ and Cd 2+ binding to amyloid-beta peptide (Aβ) of Alzheimer’s disease. Biochim Biophys Acta - Proteins Proteomics 1764:246–256. https://doi.org/10.1016/j.bbapap.2005.09.012

    Article  CAS  Google Scholar 

  39. Talmard C, Bouzan A, Faller P (2007) Zinc binding to amyloid-β: Isothermal titration calorimetry and Zn competition experiments with Zn sensors. Biochemistry 46:13658–13666. https://doi.org/10.1021/bi701355j

    Article  CAS  PubMed  Google Scholar 

  40. Zirah S, Kozin SA, Mazur AK et al (2006) Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J Biol Chem 281:2151–2161. https://doi.org/10.1074/jbc.M504454200

    Article  CAS  PubMed  Google Scholar 

  41. Alies B, Conte-Daban A, Sayen S et al (2016) Zinc(II) binding site to the amyloid-β peptide: insights from spectroscopic studies with a wide series of modified peptides. Inorg Chem 55:10499–10509. https://doi.org/10.1021/acs.inorgchem.6b01733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mekmouche Y, Coppel Y, Hochgräfe K et al (2005) Characterization of the ZnII binding to the peptide amyloid-β1-16 linked to Alzheimer’s disease. ChemBioChem 6:1663–1671. https://doi.org/10.1002/cbic.200500057

    Article  CAS  PubMed  Google Scholar 

  43. Danielsson J, Pierattelli R, Banci L, Gräslund A (2007) High-resolution NMR studies of the zinc-binding site of the Alzheimer’s amyloid β-peptide. FEBS J 274:46–59. https://doi.org/10.1111/j.1742-4658.2006.05563.x

    Article  CAS  PubMed  Google Scholar 

  44. Abelein A, Gräslund A, Danielsson J (2015) Zinc as chaperone-mimicking agent for retardation of amyloid β peptide fibril formation. Proc Natl Acad Sci 112:5407–5412. https://doi.org/10.1073/pnas.1421961112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Talmard C, Guilloreau L, Coppel Y et al (2007) Amyloid-beta peptide forms monomeric complexes with CuII and ZnII prior to aggregation. ChemBioChem 8:163–165. https://doi.org/10.1002/cbic.200600319

    Article  CAS  PubMed  Google Scholar 

  46. Branch T, Barahona M, Dodson CA, Ying L (2017) Kinetic analysis reveals the identity of Aβ-metal complex responsible for the initial aggregation of Aβ in the synapse. ACS Chem Neurosci 8:1970–1979. https://doi.org/10.1021/acschemneuro.7b00121

    Article  CAS  PubMed  Google Scholar 

  47. Istrate AN, Kozin SA, Zhokhov SS et al (2016) Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization. Sci Rep 6:21734. https://doi.org/10.1038/srep21734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hori Y, Hashimoto T, Wakutani Y et al (2007) The Tottori (D7N) and English (H6R) familial Alzheimer disease mutations accelerate Aβ fibril formation without increasing protofibril formation. J Biol Chem 282:4916–4923. https://doi.org/10.1074/jbc.M608220200

    Article  CAS  PubMed  Google Scholar 

  49. Minicozzi V, Stellato F, Comai M et al (2008) Identifying the minimal copper- and zinc-binding site sequence in amyloid-β peptides. J Biol Chem 283:10784–10792. https://doi.org/10.1074/jbc.M707109200

    Article  CAS  PubMed  Google Scholar 

  50. Kwang HL, Yun KK, Chang YT (2007) Investigations of the molecular mechanism of metal-induced Aβ (1–40) amyloidogenesis. Biochemistry 46:13523–13532. https://doi.org/10.1021/bi701112z

    Article  CAS  Google Scholar 

  51. Illes-Toth E, Meisl G, Rempel DL et al (2021) Pulsed hydrogen-deuterium exchange reveals altered structures and mechanisms in the aggregation of familial Alzheimer’s disease mutants. ACS Chem Neurosci 12:1972–1982. https://doi.org/10.1021/acschemneuro.1c00072

    Article  CAS  PubMed  Google Scholar 

  52. Radko SP, Khmeleva SA, Kaluzhny DN et al (2020) The english (H6R) mutation of the Alzheimer’s disease amyloid-β peptide modulates its zinc-induced aggregation. Biomolecules 10:961. https://doi.org/10.3390/biom10060961

    Article  CAS  PubMed Central  Google Scholar 

  53. Masters CL, Multhaup G, Simms G et al (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4:2757–2763. https://doi.org/10.1002/j.1460-2075.1985.tb04000.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antonios G, Saiepour N, Bouter Y et al (2013) N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun 1:56. https://doi.org/10.1186/2051-5960-1-56

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sergeant N, Bombois S, Ghestem A et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591. https://doi.org/10.1046/j.1471-4159.2003.01818.x

    Article  CAS  PubMed  Google Scholar 

  56. Bouter Y, Noguerola JSL, Tucholla P et al (2015) Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol 130:713–729. https://doi.org/10.1007/s00401-015-1489-x

    Article  CAS  PubMed  Google Scholar 

  57. Shinohara M, Koga S, Konno T et al (2017) Distinct spatiotemporal accumulation of N-truncated and full-length amyloid-β42 in Alzheimer’s disease. Brain 140:3301–3316. https://doi.org/10.1093/brain/awx284

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bayer TA, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127:787–801. https://doi.org/10.1007/s00401-014-1287-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luhrs T, Ritter C, Adrian M et al (2005) 3D structure of Alzheimer’s amyloid-β (1–42) fibrils. Proc Natl Acad Sci 102:17342–17347. https://doi.org/10.1073/pnas.0506723102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cerofolini L, Ravera E, Bologna S et al (2020) Mixing Aβ(1–40) and Aβ(1–42) peptides generates unique amyloid fibrils. Chem Commun 56:8830–8833. https://doi.org/10.1039/d0cc02463e

    Article  CAS  Google Scholar 

  61. Gremer L, Schölzel D, Schenk C et al (2017) Fibril structure of amyloid-β(1–42) by cryo–electron microscopy. Science 358:116–119. https://doi.org/10.1126/science.aao2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Colvin MT, Silvers R, Ni QZ et al (2016) Atomic Resolution structure of monomorphic Aβ42 amyloid fibrils. J Am Chem Soc 138:9663–9674. https://doi.org/10.1021/jacs.6b05129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xiao Y, Ma B, McElheny D et al (2015) Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505. https://doi.org/10.1038/nsmb.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Damante CA, Ösz K, Nagy Z et al (2011) Zn2+’s ability to alter the distribution of Cu2+ among the available binding sites of Aβ(1–16)-polyethylenglycol-ylated peptide: implications in Alzheimer’s disease. Inorg Chem 50:5342–5350. https://doi.org/10.1021/ic101537m

    Article  CAS  PubMed  Google Scholar 

  65. Alies B, Sasaki I, Proux O et al (2013) Zn impacts Cu coordination to amyloid-β, the Alzheimer’s peptide, but not the ROS production and the associated cell toxicity. Chem Commun 49:1214–1216. https://doi.org/10.1039/c2cc38236a

    Article  CAS  Google Scholar 

  66. Mital M, Wezynfeld NE, Frączyk T et al (2015) A functional role for Aβ in metal homeostasis? N-truncation and high-affinity copper binding. Angew Chemie Int Ed 54:10460–10464. https://doi.org/10.1002/anie.201502644

    Article  CAS  Google Scholar 

  67. Hahn M (1995) Receptor surface models. 1 definition and construction. J Med Chem 38:2080–2090. https://doi.org/10.1021/jm00012a007

    Article  CAS  PubMed  Google Scholar 

  68. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. https://doi.org/10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Z, Song LF, Li P, Merz KM (2020) Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J Chem Theory Comput 16:4429–4442. https://doi.org/10.1021/acs.jctc.0c00194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsui V, Case DA (2000) Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers 56:275–291. https://doi.org/10.1002/1097-0282(2000)56:4%3c275::AID-BIP10024%3e3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  72. Strange RW, Hough MA, Antonyuk SV, Hasnain SS (2012) Structural evidence for a copper-bound carbonate intermediate in the peroxidase and dismutase activities of superoxide dismutase. PLoS ONE 7:e44811. https://doi.org/10.1371/journal.pone.0044811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kotuniak R, Strampraad MJF, Bossak-Ahmad K et al (2020) Key intermediate species reveal the copper(II)-exchange pathway in biorelevant ATCUN/NTS complexes. Angew Chemie Int Ed 59:11234–11239. https://doi.org/10.1002/anie.202004264

    Article  CAS  Google Scholar 

  74. Pelmenschikov V, Siegbahn PEM (2005) Copper−zinc superoxide dismutase: theoretical insights into the catalytic mechanism. Inorg Chem 44:3311–3320. https://doi.org/10.1021/ic050018g

    Article  CAS  PubMed  Google Scholar 

  75. Tomaselli S, Esposito V, Vangone P et al (2006) The α-to-β conformational transition of Alzheimer’s Aβ-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding. ChemBioChem 7:257–267. https://doi.org/10.1002/cbic.200500223

    Article  CAS  PubMed  Google Scholar 

  76. Santoro A, Grimaldi M, Buonocore M et al (2021) Exploring the early stages of the amyloid Aβ(1–42) peptide aggregation process: an NMR study. Pharmaceuticals 14:732. https://doi.org/10.3390/ph14080732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hu Z-W, Vugmeyster L, Au DF et al (2019) Molecular structure of an N-terminal phosphorylated β-amyloid fibril. Proc Natl Acad Sci 116:11253–11258. https://doi.org/10.1073/pnas.1818530116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi ES, Dokholyan NV (2021) SOD1 oligomers in amyotrophic lateral sclerosis. Curr Opin Struct Biol 66:225–230. https://doi.org/10.1016/j.sbi.2020.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jang J-Y, Cho H, Park H-Y et al (2017) ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ. Biochem Biophys Res Commun 493:697–707. https://doi.org/10.1016/j.bbrc.2017.08.127

    Article  CAS  PubMed  Google Scholar 

  80. Takeda A, Tamano H (2015) Regulation of extracellular Zn2+ homeostasis in the hippocampus as a therapeutic target for Alzheimer’s disease. Expert Opin Ther Targets 19:1051–1058. https://doi.org/10.1517/14728222.2015.1029454

    Article  CAS  PubMed  Google Scholar 

  81. Huat TJ, Camats-Perna J, Newcombe EA et al (2019) Metal toxicity links to Alzheimer’s disease and neuroinflammation. J Mol Biol 431:1843–1868. https://doi.org/10.1016/j.jmb.2019.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frączyk T, Zawisza IA, Goch W et al (2016) On the ability of CuAβ1x peptides to form ternary complexes: neurotransmitter glutamate is a competitor while not a ternary partner. J Inorg Biochem 158:5–10. https://doi.org/10.1016/j.jinorgbio.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  83. Montoliu-Gaya L, Strydom A, Blennow K et al (2021) Blood biomarkers for Alzheimer’s disease in down syndrome. J Clin Med 10:3639. https://doi.org/10.3390/jcm10163639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Daniele S, Frosini D, Pietrobono D et al (2018) α-Synuclein heterocomplexes with β-amyloid are increased in red blood cells of parkinson’s disease patients and correlate with disease severity. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2018.00053

    Article  PubMed  PubMed Central  Google Scholar 

  85. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TF conceived, designed, performed the literature search and analysis. PC performed in silico analyses of the simulated structures. Both authors wrote the article.

Corresponding author

Correspondence to Tomasz Frączyk.

Ethics declarations

Conflict of interest

Authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frączyk, T., Cieplak, P. Neglected N-Truncated Amyloid-β Peptide and Its Mixed Cu–Zn Complexes. Protein J 41, 361–368 (2022). https://doi.org/10.1007/s10930-022-10056-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10056-7

Keywords

Navigation