Skip to main content

Advertisement

Log in

SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A class of plant defense and storage proteins, including Putranjiva roxburghii PNP protein (PRpnp), belongs to PNP-UDP family. The PRpnp and related plant proteins contain a disrupted PNP-UDP domain as revealed in previous studies. In PRpnp, the insert disrupting the domain contains the trypsin inhibitory site. In the present work, we analyzed native PRpnp (nPRpnp) complex formation with trypsin and inosine using SAXS experiments and established its dual functionality. Results indicated a relatively compact nPRpnp:Inosine structure, whereas trypsin complex showed conformational changes/flexibility. nPRpnp also exhibited a strong anti-cancer activity toward breast cancer (MCF-7), prostate cancer (DU-145) and hepatocellular carcinoma (HepG2) cell lines. MCF-7 and DU-145 were more sensitive to nPRpnp treatment as compared to HepG2. However, nPRpnp treatment showed no effect on the viability of HEK293 cells indicating that nPRpnp is specific for targeting the viability of only cancer cells. Further, acridine orange, DAPI and DNA fragmentation studies showed that cytotoxic effect of nPRpnp is mediated through induction of apoptosis as evident from the apoptosis-associated morphological changes and nuclear fragmentation observed after PRpnp treatment of cancer cells. These results suggest that PRpnp has the potential to be used as an anticancer agent. This is first report of anticancer activity as well as SAXS-based analysis for a PNP enzyme with trypsin inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Code Availability

Not Applicable.

Abbreviations

nPRpnp:

Putranjiva roxburghii PNP protein purified from its native source

SAXS:

Small-angle X-ray scattering

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide

AO/EB:

Acridine orange and ethidium bromide

DAPI:

4’,6-Diamidino-2-phenylindole

References

  1. Tomar PPS, Nikhil K, Singh A, Selvakumar P, Roy P, Sharma AK (2014) Characterization of anticancer, DNase and antifungal activity of pumpkin 2S albumin. Biochem Biophys Res Commun 448(4):349–354

    Article  CAS  PubMed  Google Scholar 

  2. Al-Mamun MA, Husna J, Khatun M, Hasan R, Kamruzzaman M, Hoque KMF, Reza MA, Ferdousi Z (2016) Assessment of antioxidant, anticancer and antimicrobial activity of two vegetable species of Amaranthus in Bangladesh. BMC Complement Altern Med 16(1):157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kar B, Verma P, Patel GK, Sharma AK (2017) Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose. Phytochemistry 140:151–165

    Article  CAS  PubMed  Google Scholar 

  4. Gogoi D, Arora N, Kalita B, Sarma R, Islam T, Ghosh SS, Devi R, Mukherjee AK (2018) Anticoagulant mechanism, pharmacological activity, and assessment of preclinical safety of a novel fibrin (ogen) olytic serine protease from leaves of Leucas indica. Sci Rep 8(1):1–17

    Google Scholar 

  5. Mushegian AR, Koonin EV (1994) Unexpected sequence similarity between nucleosidases and phosphoribosyltransferases of different specificity. Protein Sci 3(7):1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pettengill EA, Pettengill JB, Coleman GD (2013) Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in populus and the plant kingdom. BMC Plant Biol 13(1):1–17

    Article  CAS  Google Scholar 

  7. Verma P, Patel GK, Kar B, Sharma AK (2017) A case of neofunctionalization of a Putranjiva roxburghii PNP protein to trypsin inhibitor by disruption of PNP-UDP domain through an insert containing inhibitory site. Plant Sci 260:19–30

    Article  CAS  PubMed  Google Scholar 

  8. Clausen S, Apel K (1991) Seasonal changes in the concentration of the major storage protein and its mRNA in xylem ray cells of poplar trees. Plant Mol Biol 17(4):669–678

    Article  CAS  PubMed  Google Scholar 

  9. Lawrence SD, Cooke JE, Greenwood JS, Korhnak TE, Davis JM (2001) Vegetative storage protein expression during terminal bud formation in poplar. Can J For Res 31(6):1098–1103

    Article  CAS  Google Scholar 

  10. Ralph SG, Chun HJE, Cooper D, Kirkpatrick R, Kolosova N, Gunter L, Tuskan GA, Douglas CJ, Holt RA, Jones SJ, Marra MA (2008) Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics 9(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wildhagen H, Dürr J, Ehlting B, Rennenberg H (2010) Seasonal nitrogen cycling in the bark of field-grown grey poplar is correlated with meteorological factors and gene expression of bark storage proteins. Tree Physiol 30(9):1096–1110

    Article  CAS  PubMed  Google Scholar 

  12. Erion MD, Stoeckler JD, Guida WC, Walter RL, Ealick SE (1997) Purine nucleoside phosphorylase. 2. Catalytic mechanism. Biochemistry 36(39):11735–11748

    Article  CAS  PubMed  Google Scholar 

  13. Chaudhary NS, Shee C, Islam A, Ahmad F, Yernool D, Kumar P, Sharma AK (2008) Purification and characterization of a trypsin inhibitor from Putranjiva roxburghii seeds. Phytochemistry 69(11):2120–2126

    Article  CAS  PubMed  Google Scholar 

  14. Wagner MC, Myslinski J, Pratap S, Flores B, Rhodes G, Campos-Bilderback SB, Sandoval RM, Kumar S, Patel M, Molitoris BA (2016) Mechanism of increased clearance of glycated albumin by proximal tubule cells. Am J Physiol-Renal Physiol 310(10):F1089–F1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Svergun DI (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr 45(2):342–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Konarev PV, Volkov VV, Sokolova AV, Koch MH, Svergun DI (2003) PRIMUS: a windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36(5):1277–1282

    Article  CAS  Google Scholar 

  17. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25(4):495–503

    Article  CAS  Google Scholar 

  18. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Svergun DI, Petoukhov MV, Koch MH (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80(6):2946–2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42(2):342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kozin MB, Svergun DI (2001) Automated matching of high-and low-resolution structural models. J Appl Crystallogr 34(1):33–41

    Article  CAS  Google Scholar 

  22. Forster S, Apostol L, Bras W (2010) Scatter: software for the analysis of nano- and mesoscale small-angle scaterring. J Appl Crsytallogr 43(3):639–646

    Article  CAS  Google Scholar 

  23. Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496(7446):477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verma P, Kar B, Varshney R, Roy P, Sharma AK (2017) Characterization of AICAR transformylase/IMP cyclohydrolase (ATIC) from Staphylococcus lugdunensis. FEBS J 284(24):4233–4261

    Article  CAS  PubMed  Google Scholar 

  25. Ali MS, Farah MA, Al-Lohedan HA, Al-Anazi KM (2018) Comprehensive exploration of the anticancer activities of procaine and its binding with calf thymus DNA: a multi spectroscopic and molecular modelling study. RSC Adv 8(17):9083–9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Takahashi A, Matsumoto H, Yuki K, Yasumoto JI, Kajiwara A, Aoki M, Furusawa Y, Ohnishi K, Ohnishi T (2004) High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status. Int J Radiat Oncol Biol Phys 60(2):591–597

    Article  PubMed  Google Scholar 

  27. Varshney R, Gupta S, Roy P (2017) Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway. Mol Cell Endocrinol 448:1–20

    Article  CAS  PubMed  Google Scholar 

  28. Petoukhov MV, Svergun DI (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struct Biol 17(5):562–571

    Article  CAS  PubMed  Google Scholar 

  29. Rambo RP, Tainer JA (2010) Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16(3):638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakatani H, Goda S, Unno H, Nagai T, Yoshimura T, Hemmi H (2012) Substrate-induced change in the quaternary structure of type 2 isopentenyl diphosphate isomerase from Sulfolobus shibatae. J Bacteriol 194(12):3216–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pollack L, Tate MW, Darnton NC, Knight JB, Gruner SM, Eaton WA, Austin RH (1999) Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proc Natl Acad Sci 96(18):10115–10117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mao C, Cook WJ, Zhou M, Koszalka GW, Krenitsky TA, Ealick SE (1997) The crystal structure of Escherichia coli purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topology. Structure 5(10):1373–1383

    Article  CAS  PubMed  Google Scholar 

  33. Koellner G, Luić M, Shugar D, Saenger W, Bzowska A (1998) Crystal structure of the ternary complex of E. coli purine nucleoside phosphorylase with formycin B, a structural analogue of the substrate inosine, and phosphate (sulphate) at 2.1 Å resolution. J Mol Biol 280(1):153–166

    Article  CAS  PubMed  Google Scholar 

  34. Koellner G, Bzowska A, Wielgus-Kutrowska B, Luić M, Steiner T, Saenger W, Stȩpiński J (2002) Open and closed conformation of the E. coli purine nucleoside phosphorylase active center and implications for the catalytic mechanism. J Mol Biol 315(3):351–371

    Article  CAS  PubMed  Google Scholar 

  35. Ronning DR, Iacopelli NM, Mishra V (2010) Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Protein Sci 19(12):2498–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kazazić S, Bertoša B, Luić M, Mikleušević G, Tarnowski K, Dadlez M, Narczyk M, Bzowska A (2016) New insights into active site conformation dynamics of E. coli PNP revealed by combined H/D exchange approach and molecular dynamics simulations. J Am Soc Mass Spectrom 27(1):73–82

    Article  PubMed  CAS  Google Scholar 

  37. Song HK, Suh SW (1998) Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J Mol Biol 275(2):347–363

    Article  CAS  PubMed  Google Scholar 

  38. Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Perez J (2017) 2017 publication guidelines for structural modeling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr Sect D: Struct Biol 73(9):710–728

    Article  CAS  Google Scholar 

  39. Fang EF, Wong JH, Ng TB (2010) Thermostable Kunitz trypsin inhibitor with cytokine inducing, antitumor and HIV-1 reverse transcriptase inhibitory activities from Korean large black soybeans. J Biosci Bioeng 109(3):211–217

    Article  CAS  PubMed  Google Scholar 

  40. Fereidunian A, Sadeghalvad M, Oscoie MO, Mostafaie A (2014) Soybean Bowman-Birk protease inhibitor (BBI): identification of the mechanisms of BBI suppressive effect on growth of two adenocarcinoma cell lines: AGS and HT29. Arch Med Res 45(6):455–461

    Article  CAS  PubMed  Google Scholar 

  41. Clemente A, Moreno FJ, Marín-Manzano MDC, Jiménez E, Domoney C (2010) The cytotoxic effect of Bowman-Birk isoinhibitors, IBB1 and IBBD2, from soybean (Glycine max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol Nutr Food Res 54(3):396–405

    Article  CAS  PubMed  Google Scholar 

  42. Clemente A, Marín-Manzano MC, Jiménez E, Arques MC, Domoney C (2012) The anti-proliferative effect of TI1B, a major Bowman-Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br J Nutr 108(1):135–144

    Article  CAS  Google Scholar 

  43. Fang EF, Bah CSF, Wong JH, Pan WL, Chan YS, Ye XJ, Ng TB (2012) A potential human hepatocellular carcinoma inhibitor from Bauhinia purpurea L. seeds: from purification to mechanism exploration. Arch Toxicol 86(2):293–304

    Article  CAS  PubMed  Google Scholar 

  44. Fei Fang E, Abd Elazeem Hassanien A, Ho Wong J, Shui Fern Bah C, Saad Soliman S, Bun Ng T (2011) Isolation of a new trypsin inhibitor from the Faba bean (Vicia faba cv. Giza 843) with potential medicinal applications. Protein Pept Lett 18(1):64–72

    Article  Google Scholar 

  45. Chan YS, Zhang Y, Ng TB (2013) Brown kidney bean Bowman-Birk trypsin inhibitor is heat and pH stable and exhibits anti-proliferative activity. Appl Biochem Biotechnol 169(4):1306–1314

    Article  CAS  PubMed  Google Scholar 

  46. Salameh MDA, Soares AS, Hockla A, Radisky DC, Radisky ES (2011) The P2′ residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochem J 440(1):95–105

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Chen D, Huang L, Chen X, Zhou M, Xi X, Ma C, Chen T, Wang L (2020) Identification and target-modification of SL-BBI: a novel Bowman-Birk type trypsin inhibitor from Sylvirana latouchii. Biomolecules 10(9):1254

    Article  CAS  PubMed Central  Google Scholar 

  48. Liu MC, Yang SJ, Jin LH, Hu DY, Xue W, Song BA, Yang S (2012) Synthesis and cytotoxicity of novel ursolic acid derivatives containing an acyl piperazine moiety. Eur J Med Chem 58:128–135

    Article  CAS  PubMed  Google Scholar 

  49. Bai CZ, Feng ML, Hao XL, Zhao ZJ, Li YY, Wang ZH (2015) Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol Med Rep 12(2):1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pal HC, Sehar I, Bhushan S, Gupta BD, Saxena AK (2010) Activation of caspases and poly (ADP-ribose) polymerase cleavage to induce apoptosis in leukemia HL-60 cells by Inula racemosa. Toxicol In Vitro 24(6):1599–1609

    Article  CAS  PubMed  Google Scholar 

  51. Wang ZH, Gao L, Li YY, Zhang Z, Yuan JM, Wang HW, Zhang L, Zhu L (2007) Induction of apoptosis by buckwheat trypsin inhibitor in chronic myeloid leukemia K562 cells. Biol Pharm Bull 30(4):783–786

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PV and BK thank CSIR, SPSY thanks DST and RV thanks UGC for financial support. We also acknowledge Dr Ashish from the CSIR IMTECH for in-house SAXS facility for SAXS data collection.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by AKS. PV, RV, SPSY and BK designed and performed all experiments. Cell line studies were guided by PR. PV prepared the first draft of the manuscript. SPSY, PR, and AKS revised the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Ashwani K. Sharma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not Applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Varshney, R., Yadav, S.P.S. et al. SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii. Protein J 41, 381–393 (2022). https://doi.org/10.1007/s10930-022-10060-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10060-x

Keywords

Navigation