Skip to main content

Advertisement

Log in

Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hierarchically porous carbon monoliths doped with nickel nanoparticles (Ni-HPCM) have been synthesized by hydrothermal method. The obtained Ni-HPCM materials exhibit a three dimensional interconnected macroporous network (0.5–3.5 μm), high specific surface area (620 m2/g), large pore volume (0.41 cm3/g), and narrow pore size distribution (3.9 nm). The Ni-HPCM materials present a high hydrogen storage capacity. At the pressure of 5 bar, the Ni-HPCM materials show a maximum hydrogen capacity of 4.29 and 1.69 wt% at 77 and 298 K, respectively. The enhanced hydrogen storage capacity is due to the hydrogen spillover effect, which allows the dissociation of hydrogen molecules on the surface of nickel nanoparticles and consequent adsorption of hydrogen atoms inside the channels of HPCM material. Therefore, the Ni-doped hierarchically porous carbon monoliths in the present study are potentially suitable to be used in the range of hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Schlapbach, A. Zuttel, Nature 414, 353 (2001)

    Article  CAS  Google Scholar 

  2. R.E. Morris, P.S. Wheatley, Angew. Chem. Int. Ed. 47, 4966 (2008)

    Article  CAS  Google Scholar 

  3. H.L. Wang, Q.M. Gao, J. Hu, J. Am. Chem. Soc. 131, 7016 (2009)

    Article  CAS  Google Scholar 

  4. P. Jena, J. Phys. Chem. Lett. 2, 206 (2011)

    Article  CAS  Google Scholar 

  5. Z. Geng, C.M. Zhang, D.B. Wang, X.Y. Zhou, M. Cai, J. Energy Chem. 24, 1 (2015)

    Article  Google Scholar 

  6. E. Masika, R. Mokaya, J. Phys. Chem. C 116, 25734 (2012)

    Article  CAS  Google Scholar 

  7. N.P. Stadie, J.J. Vajo, R.W. Cumberland, A.A. Wilson, C.C. Ahn, B. Fultz, Langmuir 28, 10057 (2012)

    Article  CAS  Google Scholar 

  8. Y.D. Xia, Z.X. Yang, Y.Q. Zhu, J. Mater. Chem. A 1, 9365 (2013)

    Article  CAS  Google Scholar 

  9. J. Gong, B. Michalkiewicz, X.C. Chen, E. Mijowska, J. Liu, Z.W. Jiang, X. Wen, T. Tang, A.C.S. Sustain, Chem. Eng. 2, 2837 (2014)

    CAS  Google Scholar 

  10. J.J. Cai, L.J. Li, X.X. Lv, C.P. Yang, X.B. Zhao, A.C.S. Appl, Mater. Interfaces 6, 167 (2014)

    Article  CAS  Google Scholar 

  11. M. Sevilla, R. Mokaya, Energy Environ. Sci. 7, 1250 (2014)

    Article  CAS  Google Scholar 

  12. R.T. Yang, Carbon 38, 623 (2000)

    Article  CAS  Google Scholar 

  13. M. Shiraishi, T. Takenobu, H. Kataura, M. Ata, Appl. Phys. A Mater. Sci. Process. 78, 947 (2004)

    Article  CAS  Google Scholar 

  14. L. Wang, R.T. Yang, Energy Environ. Sci. 1, 268 (2008)

    Article  CAS  Google Scholar 

  15. Y. Wang, R.T. Yang, J. Catal. 260, 198 (2008)

    Article  CAS  Google Scholar 

  16. V. Parambhath, R. Nagar, K. Sethupathi, S. Ramaprabhu, J. Phys, Chem. C 115, 15679 (2011)

    CAS  Google Scholar 

  17. A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.Z. Moshfegh, P. Parvin, A. Nozad Golikand, J. Phys. Chem. C 115, 6994 (2011)

    Article  CAS  Google Scholar 

  18. J.L. Zhu, J.H. Cheng, A. Dailly, M. Cai, M. Beckner, P.K. Shen, Int. J. Hydro. Energy 39, 14843 (2014)

    Article  CAS  Google Scholar 

  19. K. Wenelska, B. Michalkiewicz, X.C. Chen, E. Mijowska, Energy 75, 549 (2014)

    Article  CAS  Google Scholar 

  20. M.L. Zhong, Z.B. Fu, L. Yuan, H.B. Zhao, J.Y. Zhu, Y.W. He, C.Y. Wang, Y.J. Tang, RSC Adv. 5, 20966 (2015)

    Article  CAS  Google Scholar 

  21. A.A.S. Nair, R. Sundara, N. Anitha, Int. J. Hydro. Energy 40, 3259 (2015)

    Article  CAS  Google Scholar 

  22. J.M. Juárez, M.B. Gómez Costa, O.A. Anunziata, Int. J. Energy Res. 39, 128 (2015)

    Article  Google Scholar 

  23. C.X. Guo, Y. Wang, C.M. Li, A.C.S. Sustain, Chem. Eng. 1, 14 (2013)

    CAS  Google Scholar 

  24. S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, C.R. Park, Chem. Mater. 24, 464 (2012)

    Article  CAS  Google Scholar 

  25. M. Jordá-Beneyto, D. Lozano-Castelló, F. Suárez-García, D. Cazorla-Amorós, Á. Linares-Solano, Microporous Mesoporous Mater. 112, 235 (2008)

    Article  Google Scholar 

  26. S.-H. Yeon, I. Knoke, Y. Gogotsi, J.E. Fischer, Microporous Mesoporous Mater. 131, 423 (2010)

    Article  CAS  Google Scholar 

  27. Y.D. Xia, R. Mokaya, J. Phys. Chem. C 111, 10035 (2007)

    Article  CAS  Google Scholar 

  28. M.S. Balathanigaimani, W.G. Shim, T.H. Kim, S.J. Cho, J.W. Lee, H. Moon, Catal. Today 146, 234 (2009)

    Article  CAS  Google Scholar 

  29. J.C. Wang, M. Oschatz, T. Biemelt, L. Borchardt, I. Senkovska, M.R. Lohe, S. Kaskel, J. Mater. Chem. 22, 23893 (2012)

    Article  CAS  Google Scholar 

  30. H.F. Yang, Y. Yan, Y. Liu, F.Q. Zhang, R.Y. Zhang, Y. Meng, M. Li, S.H. Xie, B. Tu, D.Y. Zhao, J. Phys. Chem. B 108, 17320 (2004)

    Article  CAS  Google Scholar 

  31. H.G. Schimmel, G.J. Kearley, M.G. Nijkamp, C.T. Visser, K.P. de Jong, F.M. Mulder, Chem. Eur. J. 9, 4764 (2003)

    Article  CAS  Google Scholar 

  32. M. Gaboardi, A. Bliersbach, G. Bertoni, M. Aramini, G. Vlahopoulou, D. Pontiroli, P. Mauron, G. Magnani, G. Salviati, A. Züttelb, M. Riccò, J. Mater. Chem. A 2, 1039 (2014)

    Article  CAS  Google Scholar 

  33. S. Giraudet, Z. Zhu, Carbon 49, 398 (2011)

    Article  CAS  Google Scholar 

  34. M. Zieliński, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Catal. Commun. 6, 777 (2005)

    Article  Google Scholar 

  35. L.F. Wang, R.T. Yang, J. Phys. Chem. C 112, 12486 (2008)

    Article  CAS  Google Scholar 

  36. S.E. Moradia, S. Amirmahmoodib, M.J. Baniamerianc, J. Alloys Compd. 498, 168 (2010)

    Article  Google Scholar 

  37. Y.S. Lee, Y.H. Kim, J.S. Hong, J.K. Suh, G.J. Cho, Catal. Today 120, 420 (2007)

    Article  CAS  Google Scholar 

  38. D. Saha, S.G. Deng, Langmuir 25, 12550 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from the Major Research Training Program of Chongqing University of Arts and Sciences, the First Excellent Young Teachers Program of Chongqing high school ([2011]65) and Postdoctoral Research Funding Plan of Jiangsu Province (1302095C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoping Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 487 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, D., Lin, B. et al. Hydrothermal synthesis of Ni-doped hierarchically porous carbon monoliths for hydrogen storage. J Porous Mater 22, 1417–1422 (2015). https://doi.org/10.1007/s10934-015-0021-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-015-0021-y

Keywords

Navigation