Skip to main content
Log in

Synergistic influence of spongy ZnO on catalytic activity of nano-catalyst Pd toward electrooxidation of liquid fuels

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Creating the synergistic effects by adding the promoters and using the supports for noble metal electrocatalytic particles are the notable ways to develop the performance and stability of anodic catalysts in the polymeric fuel cells. Herein, the spongy zinc oxide powder (SZO) has been synthesized by the solution combustion method and the nano-catalyst palladium (NCPd) anchored on SZO as support via wetness incorporation. The SEM, FESEM, BET and XRD techniques have been used for characterization of the materials. The electrochemical studies have been carried out to identify the behavior and efficiency of NCPd/SZO toward electrooxidation of liquid fuels. The electrochemically active surface area has been obtained 106.93 m2 g−1 for NCPd/SZO. As-prepared nano-microstructure electrocatalyst has been utilized in the electrooxidation of liquid fuels, including: methanol, formaldehyde, formic acid, ethanol, and ethylene glycol. The results of this study have been shown a higher NCPd resistance towards sintering, dissolution, and aggregation on SZO as a spongy and oxide support than non-supported palladium; which is the reason for the higher activity of NCPd/SZO compared to NCPd. The SZO with spongy structural network has been affected on the electrochemical surface area, dispersion, and durability of NCPd. It is effective the capability of removing the poisoning species of the electrooxidation of liquid fuels on NCPd through the lattice oxygen, leading to improve the electrocatalytic efficiency of NCPd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The availability of data and materials (data transparency) is confirmed.

Code availability

All software programs used by the service companies have been (access code provided by that company): Razi Metallurgical Research Center and Central Laboratory of Sistan and Baluchestan University.

References

  1. Zh. Chen, Y.Ch. He, J.H. Chen, X.Zh. Fu, R. Sun, Y.X. Chen, Ch.P. Wong, J. Phys. Chem. C 122, 8976 (2018). https://doi.org/10.1021/acs.jpcc.8b01095

    Article  CAS  Google Scholar 

  2. H. Zhang, J. He, Ch. Zhai, M. Zhu, Chin. Chem. Lett. 30, 2338 (2019). https://doi.org/10.1016/j.cclet.2019.07.021

    Article  CAS  Google Scholar 

  3. S.K. Hassaninejad-Darzi, J. Electroceram. 33, 252 (2014). https://doi.org/10.1007/s10832-014-9966-5

    Article  CAS  Google Scholar 

  4. G. Centi, S. Perathoner, ChemSusChem 3, 195 (2010). https://doi.org/10.1002/cssc.200900289

    Article  CAS  PubMed  Google Scholar 

  5. A.Y. Lo, Y.Ch. Chung, W.H. Hung, Y.Ch. Hsu, Ch.M. Tseng, W.L. Zhang, F.K. Wang, Ch.Y. Lin, Electrochim. Acta 225, 207 (2017). https://doi.org/10.1016/j.electacta.2016.12.098

    Article  CAS  Google Scholar 

  6. H. Xu, P. Song, B. Yan, J. Wang, F. Gao, Y. Zhang, Y. Du, J. Electroanal. Chem. 814, 31 (2018). https://doi.org/10.1016/j.jelechem.2018.02.034

    Article  CAS  Google Scholar 

  7. D.N. Li, Y.M. He, J.J. Feng, Q.L. Zhang, L. Zhang, L. Wu, A.J. Wang, J. Colloid Interface Sci. 516, 476 (2018). https://doi.org/10.1016/j.jcis.2018.01.060

    Article  CAS  PubMed  Google Scholar 

  8. Z. Yavari, M. Noroozifar, T. Parvizi, Environ. Prog. Sustain. Energy 37, 597 (2018). https://doi.org/10.1002/ep.12724

    Article  CAS  Google Scholar 

  9. Z. Mojović, P. Banković, N. Jović-Jovičić, A. Abu Rabi-Stanković, A. Milutinović-Nikolić, D. Jovanović, J. Porous Mater. 19, 695 (2012). https://doi.org/10.1007/s10934-011-9521-6

    Article  CAS  Google Scholar 

  10. F. Gao, Y. Zhang, F. Ren, Y. Shiraishi, Y. Du, Adv. Funct. Mater. 30, 2000255 (2020). https://doi.org/10.1002/adfm.202000255

    Article  CAS  Google Scholar 

  11. G. Sheng, J. Chen, H. Ye, Zh. Hu, X.-Zh. Fu, R. Sun, W. Huang, Ch.-P. Wong, J. Colloid Interface Sci. 522, 264 (2018). https://doi.org/10.1016/j.jcis.2018.03.039

    Article  CAS  PubMed  Google Scholar 

  12. C. Alegre, M.E. Gálvez, R. Moliner, M.J. Lázaro, Catalysts 5, 392 (2015). https://doi.org/10.3390/catal5010392

    Article  CAS  Google Scholar 

  13. H. Vahdat Vasei, S.M. Masoudpanah, M. Adeli, M.R. Aboutalebi, Ceram. Int. 44, 7741 (2018). https://doi.org/10.1016/j.ceramint.2018.01.202

    Article  CAS  Google Scholar 

  14. S.M. Lam, J.C. Sin, A.R. Mohamed, Mater. Lett. 167, 141 (2016). https://doi.org/10.1016/j.matlet.2015.12.156

    Article  CAS  Google Scholar 

  15. A.A. Essawy, J. Clean. Prod. 183, 1011 (2018). https://doi.org/10.1016/j.jclepro.2018.02.214

    Article  CAS  Google Scholar 

  16. W. Zhijian, Z. Haiming, Z. Ligong, Y. Jinshan, Y. Shenggang, W. Chunyan, Nanotechnology 14, 11 (2003). https://doi.org/10.1088/0957-4484/14/1/303

    Article  Google Scholar 

  17. B. Sunandan, D. Joydeep, Sci. Technol. Adv. Mater. 10, 013001 (2009). https://doi.org/10.1088/1468-6996/10/1/01300

    Article  Google Scholar 

  18. D. Raoufi, Renew. Energy 50, 932 (2013). https://doi.org/10.1016/j.renene.2012.08.076

    Article  CAS  Google Scholar 

  19. A.J. Reddy, M.K. Kokila, H. Nagabhushana, J.L. Rao, C. Shivakumara, B.M. Nagabhushana, R.P.S. Chakradhar, Spectrochim. Acta A 81, 53 (2011). https://doi.org/10.1016/j.saa.2011.05.043

    Article  CAS  Google Scholar 

  20. P. Rai, W.-K. Kwak, Y.-T. Yu, ACS Appl. Mater. Interfaces 5, 3026 (2013). https://doi.org/10.1021/am302811h

    Article  CAS  PubMed  Google Scholar 

  21. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Chem. Rev. 116, 14493 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  22. M. Shahmirzaee, M. Shafiee Afarani, A.M. Arabi, A. Iran Nejhad, Res. Chem. Intermed. 43, 321 (2017). https://doi.org/10.1007/s1116

    Article  CAS  Google Scholar 

  23. Z. Ghahramani, A.M. Arabi, M. Shafiee Afarani, M. Mahdavian, Int. J. Appl. Ceram. Technol. 17, 1514 (2020). https://doi.org/10.1111/ijac.13365

    Article  CAS  Google Scholar 

  24. F. Kaedi, Z. Yavari, M. Asmaei, A.R. Abbasian, M. Noroozifar, N. J. Chem. 43, 3884 (2019). https://doi.org/10.1039/c8nj05950k

    Article  CAS  Google Scholar 

  25. Sh. Wang, Ch. Zhang, H. Li, L. Liu, Intermetallics 87, 6 (2017). https://doi.org/10.1016/j.intermet.2017.04.002

    Article  CAS  Google Scholar 

  26. S. Mukherjee, M. Carmo, G. Kumar, R.C. Sekol, A.D. Taylor, J. Schroers, Electrochim. Acta 74, 145 (2012). https://doi.org/10.1016/j.electacta.2012.04.038

    Article  CAS  Google Scholar 

  27. H. Xu, B. Yan, K. Zhang, J. Wang, Sh. Li, C. Wang, Y. Du, P. Yang, Electrochim. Acta 261, 521 (2018). https://doi.org/10.1016/j.electacta.2018.01.004

    Article  CAS  Google Scholar 

  28. Y.N. Zhai, S. He, X. Xiao, Z.Q. Wu, S.N. Li, J.M. Lee, Fuel Cells 6, 771 (2016). https://doi.org/10.1002/fuce.201600143

    Article  CAS  Google Scholar 

  29. H. Xu, B. Yan, K. Zhang, J. Wang, Sh. Li, C. Wang, Y. Shiraishi, Y. Du, P. Yang, J. Alloys Compd. 723, 36 (2017). https://doi.org/10.1016/j.jallcom.2017.06.230

    Article  CAS  Google Scholar 

  30. Zh. Yang, L. Liu, A.J. Wang, J. Yuan, J.J. Feng, Q.Q. Xu, Int. J. Hydrog. Energy 42, 2034 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.088

    Article  CAS  Google Scholar 

  31. F. Yang, B. Zhang, S. Dong, Y. Tang, L. Hou, Zh. Chen, Z. Li, W. Yang, Ch. Xu, M. Wang, Y. Li, Y. Li, Appl. Surf. Sci. 452, 11 (2018). https://doi.org/10.1016/j.apsusc.2018.05.022

    Article  CAS  Google Scholar 

  32. S. Štrbac, A. Maksić, Z. Rakočević, J. Electroanal. 823, 161 (2018). https://doi.org/10.1016/j.jelechem.2018.06.011

    Article  CAS  Google Scholar 

  33. J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P.J. Kulesza, P. Schmuki, Electrochem. Commun. 7, 1417 (2005). https://doi.org/10.1016/j.elecom.2005.09.03

    Article  CAS  Google Scholar 

  34. L. Li, Y. Xing, Energies 2, 789 (2009). https://doi.org/10.1021/jp0655470

    Article  CAS  Google Scholar 

  35. F.M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, Ch. Maccato, S. Rapino, B.R. Gonzalez, H. Amenitsch, T.D. Ros, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Prato, M. Bonchio, Nat. Chem. 2, 826 (2010). https://doi.org/10.1038/nchem.761

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding information available.

Author information

Authors and Affiliations

Authors

Contributions

The participation of the authors is confirmed in the order presented in the manuscript.

Corresponding authors

Correspondence to Zahra Yavari or Meissam Noroozifar.

Ethics declarations

Conflict of interests

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaedi, F., Yavari, Z., Shafiee Afarani, M. et al. Synergistic influence of spongy ZnO on catalytic activity of nano-catalyst Pd toward electrooxidation of liquid fuels. J Porous Mater 27, 1203–1211 (2020). https://doi.org/10.1007/s10934-020-00903-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00903-2

Keywords

Navigation