Skip to main content
Log in

A comparative study of smart polyurethane foam using RSM and COMSOL multiphysics for acoustical applications: from materials to component

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A biodegradable, lightweight, and flexible smart PU foam was manufactured using absorption and hydrothermal reduction process and tested for its acoustic properties per ASTM standard E 1050-12. The nanoparticles used in this research are graphene (Gr), zirconium oxide (ZrO2), and bamboo charcoal (BC). The foam’s structure and the uniform distribution of its nanoparticles were seen using FESEM, and the FTIR graph was used to identify the carbon compounds present in the foam. According to the Johnson-Champoux-Allard-Lafarge model, the five important characteristics such as porosity, airflow resistivity, tortuosity, viscous, and thermal characteristic length were determined from the sound absorption coefficient (SAC) using inverse acoustical characterization through MATLAB. The composition of nanoparticles in different foams was consistently designed using central composite design (CCD). Through response surface methodology (RSM), the optimum weight% of nanoparticles was analyzed to produce the maximum noise reduction coefficient (NRC). The maximum value of NRC obtained is 0.628 for the optimal weight percentages of 0.1 wt% of Gr, 0.1 wt% of ZrO2, and 2.5 wt% of BC. The evaluation of experimental results of sound absorption coefficient was compared with inverse characteristics using Matlab code and with simulation using Comsol Multiphysics 5.5. The SPL plot shows an average 5 to 31 dB SPL reduction for the best sample (A8). The outcome suggests that the smart composite foam could be an excellent material for sound insulation for automobiles, building walls, machinery, and aircraft applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

 SAC:

Sound absorption coefficient

NRC:

Noise reduction coefficient

VCL:

 Viscous characteristic length

TCL:

 Thermal characteristic length

RSM:

 Response surface methodology

CCD:

 Central composite design.

FESEM:

Field emission scanning electron microscope

FTIR:

Fourier transform infrared spectroscopy

Gr:

Graphene.

ZrO2 :

Zirconium oxide

BC:

 Bamboo charcoal

wt%:

Weight%

SPL:

Sound pressure level

References

  1. J.B. Alam, M.J. Alam, M.M. Bin, Rahman, A.K. Dikshit, S.K. Khan, Study on traffic noise level of sylhet by multiple regression analysis associated with health hazards. Iran. J. Environ. Health Sci. Eng. 3, 71–78 (2006)

    Google Scholar 

  2. V.K. Murthy, A.K. Majumder, S.N. Khanal, D.P. Sudedi, Assessment of traffic noise pollution in banepa, A semi urban town of nepal. Kathmandu Univ. J. Sci. Eng. Technol. 1, 1–9 (2007)

    Google Scholar 

  3. E. Ohrstrom, M. Bjorkman, R. Rylander, Subjective evaluation of work environment with special reference to noise. J. Sound Vib. 65, 241–249 (1979). https://doi.org/10.1016/0022-460X(79)90517-0

    Article  Google Scholar 

  4. L. Yuvaraj, S. Jeyanthi, M.C.L. Babu, ScienceDirect Sound absorption analysis of castor oil based polyurethane foam with natural fiber. Mater. Today Proc. 5, 23534–23540 (2018). https://doi.org/10.1016/j.matpr.2018.10.141

    Article  CAS  Google Scholar 

  5. J. Subramanian, S. Vinoth Kumar, G. Venkatachalam, M. Gupta, R. Singh, An investigation of EMI shielding effectiveness of organic polyurethane composite reinforced with MWCNT-CuO-bamboo charcoal nanoparticles. J. Electron. Mater. 50, 1282–1291 (2021). https://doi.org/10.1007/s11664-020-08622-9

    Article  CAS  Google Scholar 

  6. T. Zhang, F. Hu, C. Zhang, D. Yang, F. Qiu, X. Peng, A novel multi-wall carbon nanotubes / poly (n-butylacrylate-co-butyl methacrylate) hybrid resin: synthesis and oil / organic solvents absorption. Fibers Polym. 18, 1865–1873 (2017). https://doi.org/10.1007/s12221-017-7461-8

    Article  CAS  Google Scholar 

  7. S. Vinoth Kumar, J. Subramanian, A. Giridharan, M. Gupta, A. Adhikari, M. Gayen, Processing and characterization of organic PU foam reinforced with nano particles. Mater. Today Proc. 46, 1077–1084 (2021). https://doi.org/10.1016/j.matpr.2021.01.428

    Article  CAS  Google Scholar 

  8. Y. Yuan, H. Yang, B. Yu, Y. Shi, W. Wang, L. Song et al., Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind. Eng. Chem. Res. 55, 10813–10822 (2016). https://doi.org/10.1021/acs.iecr.6b02942

    Article  CAS  Google Scholar 

  9. F. Luo, M. Lu, Enhanced thermal stability and flame retardancy of polyurethane foam composites with polybenzoxazine modi fi ed ammonium. RSC Adv. 6, 13418–13425 (2016). https://doi.org/10.1039/C5RA27256D

    Article  CAS  Google Scholar 

  10. G. Sung, J. Wan, J. Hyeun, Fabrication of polyurethane composite foams with magnesium hydroxide fi ller for improved sound absorption. J. Ind. Eng. Chem. 44, 99–104 (2016). https://doi.org/10.1016/j.jiec.2016.08.014

    Article  CAS  Google Scholar 

  11. X. Zhou, M.M. Sain, K. Oksman, Semi-rigid biopolyurethane foams based on palm-oil polyol and reinforced with cellulose nanocrystals. Compos. Part. A  83, 56–62 (2016). https://doi.org/10.1016/j.compositesa.2015.06.008

    Article  CAS  Google Scholar 

  12. E. Ciecierska, P. Bazarnik, M. Gloc, M. Kulesza, M. Kowalski, S. Krauze et al., Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials. Compos. Struct. 140, 67–76 (2016). https://doi.org/10.1016/j.compstruct.2015.12.022

    Article  Google Scholar 

  13. G. Sung, J.H. Kim, Effect of high molecular weight isocyanate contents on manufacturing polyurethane foams for improved sound absorption coefficient. Korean J. Chem. Eng. 34, 1222–1228 (2017). https://doi.org/10.1007/s11814-016-0361-6

    Article  CAS  Google Scholar 

  14. S. Chen, Y. Jiang, The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polym. Compos. 39, 1370–1381 (2018). https://doi.org/10.1002/pc.24078

    Article  CAS  Google Scholar 

  15. G.S. Dhaliwal, D.S. Bajwa, S. Bajwa, Fabrication and testing of soy-based polyurethane foam with flame retardant properties. J. Polym. Environ. 29, 1153–1161 (2021). https://doi.org/10.1007/s10924-020-01930-5

    Article  CAS  Google Scholar 

  16. L. Yuvaraj, S. Jeyanthi, Inverse acoustical characterization of natural fiber loaded flexible polyurethane foam. J. Adv. Res. Dyn. Control Syst. 11, 404–417 (2019)

    Google Scholar 

  17. B. Wicklein, A. Kocjan, G. Salazar-alvarez, F. Carosio, G. Camino, M. Antonietti et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248

    Article  CAS  PubMed  Google Scholar 

  18. V.S. Bergamaschi, F.M.S. Carvalho, C. Rodrigues, D.B. Fernandes, Preparation and evaluation of zirconia microspheres as inorganic exchanger in adsorption of copper and nickel ions and as catalyst in hydrogen production from bioethanol. Chem. Eng. J. 112, 153–158 (2005). https://doi.org/10.1016/j.cej.2005.04.016

    Article  CAS  Google Scholar 

  19. T.M. Suzuki, J.O. Bomani, H. Matsunaga, T. Yokoyama, Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. React. Funct. Polym. 43, 165–172 (2000). https://doi.org/10.1016/S1381-5148(99)00038-3

    Article  CAS  Google Scholar 

  20. H. Cui, Q. Li, S. Gao, J. Ku, Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. Ind. Eng. Chem. Res. 18, 1418–1427 (2012). https://doi.org/10.1016/j.jiec.2012.01.045

    Article  CAS  Google Scholar 

  21. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  22. N. Saeed Khan, S. Zuhra, Z. Shah, E. Bonyah, W. Khan, S. Islam, Slip flow of Eyring-Powell nanoliquid film containing graphene nanoparticles. AIP Adv. 8, 115302 (2018). https://doi.org/10.1063/1.5055690

    Article  CAS  Google Scholar 

  23. B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43, 5092–5101 (2008). https://doi.org/10.1007/s10853-008-2755-2

    Article  CAS  Google Scholar 

  24. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  PubMed  Google Scholar 

  25. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  26. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  27. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun 146, 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  28. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  29. W. Wei, X. Qu, Extraordinary physical properties of functionalized graphene. Nano Micro Small 8, 2138–2151 (2012). https://doi.org/10.1002/smll.201200104

    Article  CAS  Google Scholar 

  30. N. Sandeep, Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles. Adv. Powder Technol. 28, 865–875 (2017). https://doi.org/10.1016/j.apt.2016.12.012

    Article  CAS  Google Scholar 

  31. P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010). https://doi.org/10.1021/nl102824h

    Article  CAS  PubMed  Google Scholar 

  32. H.K. Chae, D.Y. Siberio Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M.O. Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004). https://doi.org/10.1038/nature02311

    Article  CAS  PubMed  Google Scholar 

  33. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber et al., Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). https://doi.org/10.1126/science.115696

    Article  CAS  PubMed  Google Scholar 

  34. V.C. Tung, L. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner et al., Low-Temperature solution processing of graphene - carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009). https://doi.org/10.1021/nl9001525

    Article  CAS  PubMed  Google Scholar 

  35. P.H. Huang, J.W. Jhan, Y.M. Cheng, H.H. Cheng, Effects of carbonization parameters of Moso-bamboo-based porous charcoal on capturing carbon dioxide. Sci. World J. 9, 937867 (2014). https://doi.org/10.1155/2014/937867

    Article  CAS  Google Scholar 

  36. C.M. Tang, Y.H. Tian, S.H. Hsu, Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8, 4895–4911 (2015). https://doi.org/10.3390/ma8084895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Gupta, A. Sneh, L. Yuvaraj, An experimental investigation on the acoustic and thermal properties of copper reinforced sustainable foam. Int. J. Eng. Res. 8, 86–91 (2019). https://doi.org/10.17577/IJERTV8IS080053

    Article  Google Scholar 

  38. V.K. Selvaraj, J. Subramanian, M. Gupta, M. Gayen, L.B. Mailan Chinnapandi, An experimental investigation on acoustical properties of organic pu foam reinforced with nanoparticles fabricated by hydrothermal reduction technique to emerging applications. J. Inst. Eng. Ser. D 101, 271–284 (2020). https://doi.org/10.1007/s40033-020-00238-x

    Article  CAS  Google Scholar 

  39. T.G. Zielinski, Normalized inverse characterization of sound absorbing rigid porous media. J. Acoust. Soc. Am. 137, 3232 (2015). https://doi.org/10.1121/1.4919806

    Article  CAS  PubMed  Google Scholar 

  40. L. Yuvaraj, S. Jeyanthi, Acoustic performance of countersunk micro-perforated panel in multilayer porous material. Build. Acoust. 27, 3–20 (2019). https://doi.org/10.1177/1351010X19886588

    Article  Google Scholar 

  41. J.F. Allard, A. Noureddine, Propagation of sound in porous media: modelling sound absorbing materials, 2nd edn. (Wiley, Hoboken, 2009), pp.1–374

    Book  Google Scholar 

  42. N. Kino, T. Ueno, Experimental determination of the micro- and macrostructural parameters influencing the acoustical performance of fibrous media. Appl. Acoust. 68, 1439–1458 (2007). https://doi.org/10.1016/j.apacoust.2006.07.008

    Article  Google Scholar 

  43. R. Panneton, Comments on the limp frame equivalent fluid model for porous media. J. Acoust. Soc. Am. 122, 217–222 (2008). https://doi.org/10.1121/1.2800895

    Article  Google Scholar 

  44. N. Kino, Further investigations of empirical improvements to the Johnson – Champoux – Allard model. Appl. Acoust. 96, 153–170 (2015). https://doi.org/10.1016/j.apacoust.2015.03.024

    Article  Google Scholar 

  45. L. Yuvaraj, K.P. Prashanth, B.K. Venkatesha, S. Sanman, N. Venkatesh, Investigation of light weight closed cell metallic foam for noise reduction in automobile application. Mater. Today: Proc. 54, 359–365 (2022). https://doi.org/10.1016/j.matpr.2021.09.308

    Article  CAS  Google Scholar 

  46. H. Li, C. Xu, Z. Yuan, Q. Wei, Synthesis of bio-based polyurethane foams with liquefied wheat straw: process optimization. Biomass Bioenergy 111, 134–40 (2018). https://doi.org/10.1016/j.biombioe.2018.02.011

    Article  CAS  Google Scholar 

  47. S.K. Behera, H. Meena, S. Chakraborty, B.C. Meikap, Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int. J. Min. Sci. Technol. 28, 621–629 (2018). https://doi.org/10.1016/j.ijmst.2018.04.014

    Article  CAS  Google Scholar 

  48. G. Torğut, Fabrication, characterization of poly(MA-co-NIPA)-graphene composites and optimization the dielectric properties using the response surface method (RSM). Polym. Test. 76, 312–319 (2019). https://doi.org/10.1016/j.polymertesting.2019.03.035

    Article  CAS  Google Scholar 

  49. L. Yuvaraj, S. Jeyanthi, L. Babu, M. Chinnapandi, Experimental and finite element approach for finding sound absorption coefficient of bio-based foam. JVE 21, 1761–1771 (2019). https://doi.org/10.21595/jve.2019.20335

    Article  Google Scholar 

  50. R. Sailesh, L. Yuvaraj, J. Pitchaimani, M. Doddamani, L. Babu, M. Chinnapandi, Acoustic behaviour of 3D printed bio-degradable micro-perforated panels with varying perforation cross-sections. Appl. Acoust. 174, 107769 (2021). https://doi.org/10.1016/j.apacoust.2020.107769

    Article  Google Scholar 

  51. R. Sailesh, L. Yuvaraj, M. Doddamani, L. Babu, M. Chinnapandi, J. Pitchaimani, Sound absorption and transmission loss characteristics of 3D printed bio- degradable material with graded spherical perforations Sound absorption and transmission loss characteristics of 3D printed bio-degradable material with graded spherical perforation. Appl. Acoust. 186, 108457 (2022). https://doi.org/10.1016/j.apacoust.2021.108457

    Article  Google Scholar 

  52. V.K. Selvaraj, J. Subramanian, A comparative study on bio-based PU foam reinforced with nanoparticles for EMI-shielding applications. Polymers 14, 3344 (2022). https://doi.org/10.3390/polym14163344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S.S. Panda, S.K. Samal, S. Mohanty, Preparation, characterization, and properties of castor oil-based flexible polyurethane / Cloisite 30B nanocomposites foam. J. Compos. Mater. 52(4), 1–14 (2017). https://doi.org/10.1177/0021998317710707

    Article  CAS  Google Scholar 

  54. S. Yu, J. Ni, Z. Zhou, S. Xu, D. Li, Y. Li, J. Qiu, Perfect broadband sound absorption on a graphene-decorated porous systemwith dual-3D structures. Mater. Interfaces ACS Appl. (2022). https://doi.org/10.1021/acsami.2c01599

    Article  Google Scholar 

  55. M. Bose, G. Dhaliwal, K. Chandrashekhara, P. Nam, Role of additives in fabrication of soy-based rigid polyurethane foam for structural and thermal insulation applications. J. Appl. Polym. Sci. 138, 1–10 (2021). https://doi.org/10.1002/app.51325

    Article  CAS  Google Scholar 

Download references

Acknowledgements

VIT-Chennai has generously provided us with a seed fund as well as a fully functional laboratory in which to conduct the trials. We are also grateful to Dr. Yuvaraj L of Acharya Institutes in Bangalore for his assistance and knowledge in analysing the results and Dr. Ram Sai Yelamanchili, Managing Director of Shaya Polymers Private Limited, for the support of material development.

Funding

The author(s) received no financial support for this article’s research, authorship, and publication.

Author information

Authors and Affiliations

Authors

Contributions

VKS: conceptualization, methodology, software, data curation, writing— original draft preparation. JS: supervision, software, validation and editing.

Corresponding author

Correspondence to Jeyanthi Subramanian.

Ethics declarations

Conflict of interest

The authors say that they have no known competing financial interests or personal affiliations that could have influenced the study’s findings. As a result, the authors state that no competing interest exist.

Research involving humans and animals

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, V.K., Subramanian, J. A comparative study of smart polyurethane foam using RSM and COMSOL multiphysics for acoustical applications: from materials to component. J Porous Mater 30, 547–563 (2023). https://doi.org/10.1007/s10934-022-01362-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01362-7

Keywords

Navigation