Skip to main content
Log in

Comparative studies on the physicochemical properties of in-situ hydrophobic silica aerogels by ambient pressure drying method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hydrophobic SiO2 aerogels show great promise for diverse smart applications due to their superhydrophobic surfaces combined with low thermal conductivity property. Hydrophobic tetraethoxysilane (TEOS)/methyltrimethoxysilane (MTMS) (TM) and TEOS/methyltriethoxysilane (MTES) (TE) gels were prepared by in-situ technique, and dried by ambient pressure drying (APD). The evolution of microstructure and chemical-physical properties of the TM and TE aerogels treated by different temperatures were investigated. Under the ultra-low and high temperature treatment, the TM and TE aerogels showed the low thermal conductivity (0.020 ~ 0.031 W m− 1 K− 1), high specific surface area (410.85 ~ 830.10 m2 g− 1) and good hydrophobicity with the water contact value from 124.2 ~ 155.7°. This work provided an effective method to prepare hydrophobic SiO2 aerogels with excellent ultra-low, high temperature resistant using double silicon sources as co-precursors, which could be an appropriate candidate for thermal insulation, catalysis and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. A.A. Mahani, S. Motahari, A. Mohebbi, Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil. Mar. Pollut Bull. 129, 438–447 (2018)

    Article  Google Scholar 

  2. Y. Yan, F. Ge, Y. Qin, M. Ruan, Z. Guo, C. He, Z. Wang, Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators. Carbohydr. Lett. 248, 116755 (2020)

    Article  CAS  Google Scholar 

  3. H. Yu, S. Oh, Y. Han, S. Lee, H.S. Jeong, H.-J. Hong, Modified cellulose nanofibril aerogel: tunable catalyst support for treatment of 4-Nitrophenol from wastewater. Chemosphere. 285, 131448 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. H. Li, X. Hu, C. Wang, Y. Chen, K. Zhuo, J. Wang, Ionic liquid modified graphene aerogel as efficient electrode material for supercapacitors based on ionic liquid electrolyte. Int. J. Hydrogen Energy. 47, 19195–19205 (2022)

    Article  CAS  Google Scholar 

  5. R. Niimi, T. Kadono, M. Arakawa, M. Yasui, K. Dohi, A.M. Nakamura, Y. Iida, A. Tsuchiyama, In situ observation of penetration process in silica aerogel: deceleration mechanism of hard spherical projectiles. Icarus. 211(2), 986–992 (2011)

    Article  Google Scholar 

  6. J. Ding, K. Zhong, S. Liu, X. Wu, X. Shen, S. Cui, X. Chen, Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique. Powder Technol. 373, 716–726 (2020)

    Article  CAS  Google Scholar 

  7. Z. Li, S. Huang, L. Shi, Z. Li, Q. Liu, M. Li, Reducing the flammability of hydrophobic silica aerogels by doping with hydroxides. J. Non-Cryst Solids. 373, 536–546 (2019)

    CAS  Google Scholar 

  8. S. Shang, X. Ye, X. Jiang, Q. You, Y. Zhong, X. Wu, S. Cui, Preparation and characterization of cellulose/attapulgite composite aerogels with high strength and hydrophobicity. J. Non-Cryst Solids. 569, 120922 (2021)

    Article  CAS  Google Scholar 

  9. X. Zhang, Z. Chen, J. Zhang, X. Ye, S. Cui, Hydrophobic silica aerogels prepared by microwave irradiation. Chem. Phys. Lett. 762, 138127 (2021)

    Article  CAS  Google Scholar 

  10. H. Anh Tuan, S. Nizetic, D. Xuan Quang, L. Rowinski, Xuan Phuong, Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere. 277, 130274 (2021)

    Article  Google Scholar 

  11. S. Nie, Q. Fu, X. Lin, C. Zhang, Y. Lu, S. Wang, Enhanced performance of a cellulose nano fi brils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 404, 126512 (2021)

    Article  CAS  Google Scholar 

  12. C. Zhang, R. Huang, P. Wang, Y. Wang, Z. Zhou, H. Zhang, Z. Wu, L. Li, Highly compressible, thermally conductive, yet electrically insulating Fluorinated Graphene Aerogel. ACS Appl. Mater. 12(52), 58170–58178 (2020)

    Article  CAS  Google Scholar 

  13. Y.X. Chen, K.M. Klima, H.J.H. Brouwers, Q. Yu, Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: the role of aerogel particle size. Compos. Part B 242, 110048 (2022)

    Article  CAS  Google Scholar 

  14. T. Kamegawa, A. Mizuno, H. Yamashita, Hydrophobic modification of SO3H-functionalized mesoporous silica and investigations on the enhanced catalytic performance. Catal. Today. 243, 153–157 (2015)

    Article  CAS  Google Scholar 

  15. H.T. Nguyen, H.M. Bui, Y.-F. Wang, S.-J. You, Non-fluoroalkyl functionalized hydrophobic surface modifications used in membrane distillation for cheaper and more environmentally friendly applications: a mini-review. Chem. Pharm. 28, 100714 (2022)

    CAS  Google Scholar 

  16. L. Qu, S. Rahimi, J. Qian, L. He, Z. He, S. Yi, Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polym. Degrad. Stab. 183, 109429 (2021)

    Article  CAS  Google Scholar 

  17. M. Dilamian, B. Noroozi, Rice straw agri-waste for water pollutant adsorption: relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr. Polym. 251, 117016 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. S.K. Padmanabhan, C. Protopapa, A. Licciulli, Stiff and tough hydrophobic cellulose-silica aerogels from bacterial cellulose and fumed silica. Prog Biotechnol. 103, 31–38 (2021)

    Google Scholar 

  19. J. Zheng, J. Yang, W. Cao, Y. Huang, Z. Zhou, Y.-X. Huang, Fabrication of transparent wear-resistant superhydrophobic SiO2 film via phase separation and chemical vapor deposition methods. Ceram. Int. 48, 32143–32151 (2022)

    Article  CAS  Google Scholar 

  20. A.A. Pisal, A.V. Rao, Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J. Porous Mater. 23, 1547–1556 (2016)

    Article  CAS  Google Scholar 

  21. X. Wu, Z. Kai, D. Jie, X. Shen, C. Sheng, Z. Ya, J. Ma, X. Chen, Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique. J. Non-Cryst Solids. 530, 119826 (2020)

    Article  CAS  Google Scholar 

  22. N. Navazesh, M.Z. Shoushtari, A. Hakimyfard, The effect of synthesis parameters on pore diameter of superhydrophobic silica aerogel prepared at ambient pressure. Solid State Sci. 134, 107031 (2022)

    Article  CAS  Google Scholar 

  23. Y. Pan, S. He, L. Gong, X. Cheng, C. Li, Z. Li, Z. Liu, H. Zhang, Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. Des. 113, 246–253 (2017)

    Article  CAS  Google Scholar 

  24. Z. Yang, H. Yu, X. Li, H. Ding, H. Ji, Hyperelastic and hydrophobic silica aerogels with enhanced compressive strength by using VTES/MTMS as precursors. J. Non-Cryst Solids. 525, 119677 (2019)

    Article  CAS  Google Scholar 

  25. C. Yao, X. Dong, G. Gao, F. Sha, D. Xu, Microstructure and Adsorption Properties of MTMS/TEOS co-precursor silica aerogels dried at ambient pressure. J. Non-Cryst Solids. 562, 120778 (2021)

    Article  CAS  Google Scholar 

  26. D. Ciftci, A. Ubeyitogullari, R.R. Huerta, O.N. Ciftci, R.A. Flores, M.D.A. Saldana, Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J. Supercrit Fluids. 127, 137–145 (2017)

    Article  CAS  Google Scholar 

  27. Q. Liu, Y. Liu, Q. Feng, C. Chen, Z. Xu, Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. J. Hazard. Mater. 441, 129965 (2023)

    Article  CAS  PubMed  Google Scholar 

  28. M.V. Khedkar, S.B. Somvanshi, A.V. Humbe, K.M. Jadhav, Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J. Non-Cryst Solids. 511, 140–146 (2019)

    Article  CAS  Google Scholar 

  29. Z. Zhao, Y. Cui, Y. Kong, J. Ren, X. Jiang, W. Yan, M. Li, J. Tang, X. Liu, X. Shen, Thermal and mechanical Performances of the Superflexible, hydrophobic, silica-based aerogel for Thermal Insulation at Ultralow temperature. ACS Appl. Mater. 13, 21286–21298 (2021)

    Article  CAS  Google Scholar 

  30. V.G. Parale, W. Han, H.-N.-R. Jung, K.-Y. Lee, H.-H. Park, Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area. Solid State Sci. 75, 63–70 (2018)

    Article  CAS  Google Scholar 

  31. V.G. Parale, K.-Y. Lee, H.-N.-R. Jung, H.-Y. Nah, H. Choi, T.-H. Kim, V.D. Phadtare, H.-H. Park, Facile synthesis of hydrophobic, thermally stable, and insulative organically modified silica aerogels using co-precursor method. Ceram. Int. 44(4), 3966–3972 (2018)

    Article  CAS  Google Scholar 

  32. S. Sobhani, S. Bastani, U.W. Gedde, M.G. Sari, B. Ramezanzadeh, Network formation and thermal stability enhancement in evolutionary crosslinked PDMS elastomers with sol-gel-formed silica nanoparticles: comparativeness between as-received and pre-hydrolyzed TEOS. Prog Org. Coat. 113, 117–125 (2017)

    Article  CAS  Google Scholar 

  33. S.A. Mahadik, S.S. Mahadik, Surface morphological and topographical analysis of multifunctional superhydrophobic sol-gel coatings. Ceram. Int. 47, 29475–29482 (2021)

    Article  CAS  Google Scholar 

  34. K. Kanamori, Liquid-phase synthesis and application of monolithic porous materials based on organic-inorganic hybrid methylsiloxanes, crosslinked polymers and carbons. J. Sol-Gel Sci. Technol. 65, 12–22 (2013)

    Article  CAS  Google Scholar 

  35. K. Kanamori, R. Ueoka, T. Kakegawa, T. Shimizu, K. Nakanishi, Hybrid silicone aerogels toward unusual flexibility, functionality, and extended applications. J. Sol-Gel Sci. Technol. 89, 166–175 (2019)

    Article  CAS  Google Scholar 

  36. Y. Lei, X. Chen, H. Song, Z. Hu, B. Cao, The influence of thermal treatment on the microstructure and thermal insulation performance of silica aerogels. J. Non-Cryst Solids. 470, 178–183 (2017)

    Article  CAS  Google Scholar 

  37. S. He, Y. Huang, G. Chen, M. Feng, H. Dai, B. Yuan, X. Chen, Effect of heat treatment on hydrophobic silica aerogel. J. Hazard. Mater. 362, 294–302 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. Y.-L. He, T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 81, 28–50 (2015)

    Article  CAS  Google Scholar 

  39. C. Zhao, Y. Li, W. Ye, X. Shen, X. Yuan, C. Ma, Y. Cao, Performance regulation of silica aerogel powder synthesized by a two-step Sol-gel process with a fast ambient pressure drying route. J. Non-Cryst Solids. 567, 120923 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Key Research and Development Project of Jiangsu Province BE2021134, BE2019734), National Natural Science Foundation of China (52202367, 52102361), Natural Science Foundation of Jiangsu Province (BK20200827, BK20200711) and Key Laboratory of Advanced Functional Composites Technology (6142906210508). Natural Science Foundation of Jiangsu Province (BK20200827), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of these programs.

Author information

Authors and Affiliations

Authors

Contributions

Ya Zhong: Conceptualization, Data curation, Investigation, Methodology, Writing-original draft. Shengyuan Wang: Conceptualization, Methodology. Zhixiang Zhu: Investigation, Writing-review & editing. Jun Gao: Software, Supervision. Feng Jing: Supervision, Writing-review & editing, Funding acquisition. Sheng Cui: Supervision, Resources. Xiaodong Shen: Supervision, Formal analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ya Zhong.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhu, Z., Zhong, Y. et al. Comparative studies on the physicochemical properties of in-situ hydrophobic silica aerogels by ambient pressure drying method. J Porous Mater 30, 2043–2055 (2023). https://doi.org/10.1007/s10934-023-01486-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01486-4

Keywords

Navigation