Skip to main content
Log in

From Flux Quantization to Superconducting Quantum Bits

  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

One of the important predictions of the early phenomenological theories of superconductivity such as the London and Ginzburg–Landau (GL) theory is the quantization of magnetic flux in multiply connected superconductors, which is one of the first demonstrations of a quantum effect on a macroscopic scale. In this paper, which is devoted to Vitalij Lazarevich Ginzburg on the occasion of his 90th birthday, we analyze a superconducting cylinder acting as a flux box as well as a superconducting disk acting as a Cooper pair box in the framework of GL theory. We extend this analysis to leaky flux and Cooper pair boxes which are obtained by introducing weak links allowing for the entry and exit of flux quanta and Cooper pairs from the respective boxes at finite rates. Flux and Cooper pair slippage processes by coherent quantum tunneling result in effective two-level quantum systems forming the basis for flux and charge quantum bits presently considered for the solid-state implementation of quantum information processing. We show that the corresponding Hamiltonians describing the leaky flux and Cooper pair box can be transformed into each other by a canonical transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. London and H. London, Proc. R. Soc. (London) A 149, 71 (1935); see also F. London, Superfluids (Wiley, New York, 1950).

    Article  ADS  MATH  Google Scholar 

  2. V. L. Ginzburg and L. D. Landau, Zh. Eksperim. I. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  3. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. Doll and M. Näbauer, Phys. Rev. Lett. 7, 51 (1961).

    Article  ADS  Google Scholar 

  5. R. Doll and M. Näbauer, Z. Phys. 169, 526 (1962).

    Article  ADS  Google Scholar 

  6. B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961).

    Article  ADS  Google Scholar 

  7. W. A. Little and R. D. Parks, Phys. Rev. Lett. 9, 9 (1962); see also Phys. Rev. 133, A97 (1964).

    Article  ADS  Google Scholar 

  8. R. Doll and D. Einzel, J. Supercond. Nov. Mag., this issue.

  9. B. D. Josephson, Phys. Lett. 1, 251 (1962).

    Article  ADS  MATH  Google Scholar 

  10. R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau, Phys. Rev. Lett. 12, 159 (1964).

    Article  ADS  Google Scholar 

  11. J. Clarke, Philos. Mag. 13, 115 (1966).

    ADS  Google Scholar 

  12. J. E. Zimmermann, P. Thiene, and J. T. Harding, J. Appl. Phys. 41, 1572 (1970).

    Article  ADS  Google Scholar 

  13. J. Clarke and A. I. Braginski (eds.), The SQUID Handbook, Vol. 1: Fundamentals and Technology of SQUIDS and SQUID Systems (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  14. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H van der Wal, and S. Lloyd, Science 285, 1036 (1999).

    Article  Google Scholar 

  15. C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, and J. E. Mooij, Science 290, 773 (2000).

    Article  ADS  Google Scholar 

  16. J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature 406, 43 (2000).

    Article  ADS  Google Scholar 

  17. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

    Article  ADS  Google Scholar 

  18. Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Article  ADS  Google Scholar 

  19. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296, 886 (2002).

    Article  ADS  Google Scholar 

  20. T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, Nature (London) 425, 941 (2003).

    Article  ADS  Google Scholar 

  21. R. Doll and P. Graf, Z. Phys. 197, 172 (1966).

    Article  ADS  Google Scholar 

  22. C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham, Phys. Rev. Lett. 87, 217003 (2001).

    Article  ADS  Google Scholar 

  23. J. E. Mooij and Yu. V. Nazarov, Nat. Phys. 2, 169 (2006).

    Article  Google Scholar 

  24. J. E. Mooij and C. J. P. M. Harmans, New J. Phys. 7, 219 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gross.

Additional information

PACS numbers: 74.20.De, 74.25.Bt, 74.25.Ha, 74.50.+r

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, R., Marx, A. & Einzel, D. From Flux Quantization to Superconducting Quantum Bits. J Supercond 19, 331–340 (2006). https://doi.org/10.1007/s10948-006-0167-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-006-0167-6

Keywords

Navigation