Skip to main content
Log in

Two Mixed Superconducting Phases in (Hg, Re)-1223 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigate Hg 0.82Re 0.18Ba 2Ca 2Cu 3O 8.76 polycrystalline samples with an optimum oxygen content aimed to analyze both their granular composition and to measure their magnetic response. We find out that the sample corresponds to a solid solution of two intrinsic structural superconductor phases. The AC magnetic susceptibility of a powder sample with a particle size of 20 μm have a critical temperature at 133 K. To make mesoscopic-scale particles of 600 nm in size, a sample of the powder was crushed and sieved. Now, the AC magnetic sample susceptibility shows two critical temperatures at 133 and 98 K. They have been described adopting a particular parametrization of the complex scalar field associated with the order parameter in a new framework of the Ginzburg–Landau theory. Thus, we propose a microscopic model to describe the dynamical interaction between these two types of grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee, S., Mori, H., Masui, T., Eltsev, Y., Yamamoto, A., Tajima, S., Phys, J.: Soc. Jpn. 70, 2255 (2001)

    Article  Google Scholar 

  2. Timusk, T., Statt, B.: Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  3. Dias, D.N., Caixeiro, E.S., De Mello, E.V.L.: Phys. C 468, 480 (2008)

    Article  ADS  Google Scholar 

  4. Bianconi, A.: Solid State Commun. 89, 993 (1994)

    Article  Google Scholar 

  5. Bianconi, A., Supercond, J.: Nov. Magn. 27, 909 (2014)

    Article  Google Scholar 

  6. Askerzade, I.N., Supercond, J.: Nov. Magn. 24, 275 (2011)

    Article  Google Scholar 

  7. Kim, C., Matsuura, A.Y., Shen, Z.-X., Motoyama, N., Eisaki, H., Uchida, S., Tohyama, T., Maekawa, S.: Phys. Rev. Lett. 77, 4054 (1996)

    Article  ADS  Google Scholar 

  8. Shi, Y., Desmedt, M., Durrell, J., Dennis, A.R., Cardwell, D.A.: Supercond. Sci. Technol. 26 (7), 095012 (2013)

    Article  ADS  Google Scholar 

  9. Hari Babu, N., Iida, K., Shi, Y., Cardwell, D.A.: Phys. C 468, 1340–1344 (2008)

    Article  ADS  Google Scholar 

  10. Peng, B., Cheng, L., Zhuang, Y., Yao, X.: Cryst. Growth Des. 13, 3734–3738 (2013)

    Article  Google Scholar 

  11. Sin, A., Cunha, A.G., Calleja, A., Orlando, M.T.D., Emmerich, F.G., Saitovitch, E.M.B., Segarra, M., Pinol, S., Obradors, X.: Adv. Mater. 10, 1126 (1998)

    Article  Google Scholar 

  12. Orlando, M.T.D., Cunha, A.G., De Mello, E.V.L., Belich, H., Baggio-Saitovitch, E., Sin, A., Obradors, X., Burghardrt, T., Eichler, A.: Phys. Rev. B 61, 15454 (2000)

    Article  ADS  Google Scholar 

  13. Passos, C.A.C., Orlando, M.T.D., Fernandes, A.A.R., Oliveira, F.D.C., Simonetti, D.S.L., Fardin, J.F., Belich, H., Ferreira, M.M.: Phys. C 419, 25 (2005)

    Article  ADS  Google Scholar 

  14. Martinez, L.G., Rossi, J.L., Correa, H.P.S., Passos, C.A.C, Orlando, M.T.D.: Powder Diffract. 23, s23 (2008)

    Article  ADS  Google Scholar 

  15. Passos, C.A.C., Orlando, M.T.D., Passamai, J.L., De Mello, E.V.L., Correa, H.P.S., Martinez, L.G.: Phys. Rev. B 74, 094514 (2006)

    Article  ADS  Google Scholar 

  16. Martinez, L.G., Rossi, J.L., Orlando, M.T.D., Passos, C.A.C., Correa, H.P.S.: Mater. Res. 11, 131 (2008)

    Article  Google Scholar 

  17. Nazzal, A.I., Lee, V.Y., Engler, E.M., Jacowitz, R.D., Tokura, Y., Torrance, J.B.: Phys. C 153–155, 1367 (1988)

    Article  Google Scholar 

  18. Anderson, P.W.: Phys. Rev. 130, 439 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Higgs, P.W.: Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  20. Liu, W.V., Wilczek, F.: Phys. Rev. Lett. 90, 047002 (2003)

    Article  ADS  Google Scholar 

  21. Caldas, H.: Phys. Rev. A 69, 063602 (2004)

  22. Vagov, A., et al.: Phys. Rev. B 86, 144514 (2012)

    Article  ADS  Google Scholar 

  23. Shanenko, A.A., et al.: PRL 106, 047005 (2011)

    Article  ADS  Google Scholar 

  24. Komendová, L., et al.: PRL 108, 207002 (2012)

    Article  ADS  Google Scholar 

  25. Popovich, P., et al.: PRL 105, 027003 (2010)

    Article  ADS  Google Scholar 

  26. Simkin, M.V.: Phys. Rev. B 44, 7074 (1991)

    Article  ADS  Google Scholar 

  27. Rosenblatt, J.: Rev. de Phys. Appl. 9, 217 (1974)

    Article  Google Scholar 

  28. Lebeau, C., Raboutou, A., Peyral, P., Rosenblatt, J.: Phys. B 152, 100 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to CAPES and CNPq for financial support. We also thank Companhia Vale do Rio Doce (CVRD), Companhia Siderúgica de Tubarão (ArcelorMittal). We gratefully acknowledge the National Light Synchrotron Laboratory (LNLS) of Brazil (XRD, XAS, and DXAS). Dr Passos would like to thank FAPES (#63925915/2013) for financial support. JSEO would like to thank the support of the Goiás Research Foundation - FAPEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Belich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleuterio, F.H.S., Amorim, L.S., Belich, H. et al. Two Mixed Superconducting Phases in (Hg, Re)-1223 Ceramics. J Supercond Nov Magn 27, 2679–2684 (2014). https://doi.org/10.1007/s10948-014-2768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2768-9

Keywords

Navigation