Skip to main content
Log in

Study of Semimagnetic Mn-Doped WO3 Nanoparticles Synthesised by Precipitation Method: Hydrogenation Creates a Promising DMS

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Abstract Tungsten oxide (WO3) nanoparticles doped with different amounts of manganese ions (W1−x Mn x O3, where x = 0.011, 0.022 and 0.044) were synthesised by hydraulic acid-assisted precipitation, followed by thermal calcinations. The powders were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and magnetic measurements. The monoclinic structure at room temperature (∼293 K) found for un-doped WO3 was preserved even with Mn doping. However, doping with Mn ions caused decease in unit-cell volume and slight increase in crystallite size (CS) of host WO3. The hydrogenation was observed to corrode the crystallites without changing in crystalline structure. Controllable room-temperature ferromagnetic (RT-FM) properties were obviously observed with hydrogenated WO3 doped with Mn. In addition, there existed an optimum doping concentration of Mn in WO3 to obtain superior FM properties. Therefore, Mn-doped WO3 nanopowders, owning to these amazingly tunable magnetic properties, could be considered a potential candidate for many applications partially required FM properties such as optical phosphors and catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao, P.: Syntheses, structures and characterizations of novel arsenotungstates. Ph.D dissertation University of Bremen-Germany (2015)

  2. El-Nouby, M.S.: Structure control and characterization of tungsten oxide nanoparticles by aqueous solution methods. Doctoral dissertation, Osaka University, OUKA (2014)

    Google Scholar 

  3. Yan, H., Zhang, X., Zhou, S., Xie, X., Luo, Y., Yu, Y.: Synthesis of WO3 nanoparticles for photocatalytic O2 evolution by thermal decomposition of ammonium tungstate loading on g-C3 N 4. J. Alloy. Compds. 509, L232–L235 (2011)

    Article  Google Scholar 

  4. Lee, K., Seo, W.S., Park, J.T.: Synthesis and optical properties of colloidal tungsten oxide nanorods. J. Am. Chem. Soc. 125, 3408–3409 (2003)

    Article  Google Scholar 

  5. Lee, S., Deshpande, R., Parilla, P.A., Jones, K.M., To, B., Mahan, A.H., Dillon, A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763–766 (2006)

    Article  Google Scholar 

  6. Lassner, E., Schubert, W.: Tungsten properties, chemistry, technology of the element alloys and chemical compounds. Kluwer Academic/Plenum Publishers, New York (1999)

    Google Scholar 

  7. Yamamoto, S., Takano, K., Inouye, A., Yoshikawa, M.: Effects of composition and structure on gasochromic coloration of tungsten oxide films investigated with XRD and RBS. Nucl. Instr. and Meth. Phys. Res. B 262, 29–32 (2007)

    Article  ADS  Google Scholar 

  8. Yaacob, M.H., Breedon, M., Kalantar-Zadeh, K., Wlodarski, W.: Absorption spectral response of nanotextured WO3 thin films with Pt catalyst towards H2. Sens. Actuators B: Chem. 137, 115–120 (2009)

    Article  Google Scholar 

  9. Reyes, L.F., Hoel, A., Saukko, S., Hessler, P., Lantto, V., Granqvist, C.G.: Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition. Sens. Actuators B: Chem. 117, 128–134 (2006)

    Article  Google Scholar 

  10. Kim, T.S., Kim, Y.B., Yoo, K.S., Sung, G.S., Jung, H.J.: Sensing characteristics of dc reactive sputtered WO3 thin films as an NO x gas sensor. Sens. Actuators B: Chem. 62, 102–108 (2000)

    Article  Google Scholar 

  11. Khatko, V., Vallejos, S., Calderer, J., Gracia, I., Cane, C., Llobet, E., Correig, X.: Micro-machined WO3-based sensors with improved characteristics. Sens. Actuators B: Chem. 140, 356–362 (2009)

    Article  Google Scholar 

  12. Castro-Hurtadoa, I., Tavera, T., Yurrita, P., Perez, N., Rodriguez, A., Mandayo, G.G., Castano, E.: Structural and optical properties of WO3 sputtered thin films nano-structured by laser interference lithography. Appl. Surf. Sci. 276, 229–236 (2013)

    Article  ADS  Google Scholar 

  13. Therese, H.A., Li, J., Kolb, U., Tremel, W.: Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route. Solid State Sci. 7, 67–72 (2005)

    Article  ADS  Google Scholar 

  14. Djaoued, Y., Priya, S., Balaji, S.: Low temperature synthesis of nanocrystalline WO3 films by sol–gel process. J. Non Cryst. Solids 354, 673–679 (2008)

    Article  ADS  Google Scholar 

  15. Kida, T., Nishiyama, A., Yuasa, M., Shimanoe, K., Yamazoe, N.: Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sens. Actuators B: Chem. 135, 568–574 (2009)

    Article  Google Scholar 

  16. Wang, G., Ji, Y., Huang, X., Yang, X., Gouma, P., Dudley, M.: Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B 110, 23777–23782 (2006)

    Article  Google Scholar 

  17. Yang, B., Li, H., Blackford, M., Luca, V.: Novel low-density mesoporous WO3 films prepared by electrodeposition. Curr. Appl. Phys. 6, 436–439 (2006)

    Article  ADS  Google Scholar 

  18. Hariharan, V., Aroulmoji, V., Prabakaran, K., Gnanavel, B., Parthibavarman, M., Sathyapriya, R., Kanagaraj, M.: Magnetic and electrochemical behaviour of cobalt doped tungsten oxide (WO3) nanomaterials by microwave irradiation method. J. Alloys Compds 689, 41–47 (2016)

    Article  Google Scholar 

  19. Kaminski, A., Sarma, S.D.: Polaron percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 88, 247202 (2002). 4 pages

    Article  ADS  Google Scholar 

  20. Wolff, P.A., Bhatt, R.N., Durst, A.C.J.: Polaron-polaron interactions in diluted magnetic semiconductors. J. Appl. Phys. 79, 5196–5198 (1996)

    Article  ADS  Google Scholar 

  21. Lewis, E.A., Le, D., Murphy, C.J., Jewell, A.D., Mattewra, M.F.G., Liriano, M.L., Rahman, T.S., Sykes, E.C.H.: Dissociative hydrogen adsorption on close-packed cobalt nanoparticle surfaces. J. Phys. Chem. C 116, 25868–25873 (2012)

    Article  Google Scholar 

  22. Pozzo, M., Alfe, D.: Hydrogen dissociation and diffusion on transition metal (= Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surfaces. Int. J. Hydrog. Energy 34, 1922–1930 (2009)

    Article  ADS  Google Scholar 

  23. Wua, E., Li, W., Li, J.: Extraordinary catalytic effect of Laves phase Cr and Mn alloys on hydrogen dissociation and absorption. Int. J. Hydrog. Energy 37, 1509–1517 (2012)

    Article  Google Scholar 

  24. Zaluska, A., Zaluski, L., Strom-Olsen, J.O.: Nanocrystalline magnesium for hydrogen storage. J. Alloys Compds 288, 217–225 (1999)

    Article  Google Scholar 

  25. Lutterotti, L.: Introduction to diffraction and the Rietveld method, Corso: Laboratorio Scienza e Tecnologia dei Materiali. https://www.google.com.bh/search?source=hp&ei=OwYVWpykGNOiUo-6gtgI&q=Luca+Lutterotti%2C+Introduction+to+diffraction+and+the+Rietveld+method%2C+Corso%3A&oq=Luca+Lutterotti%2C+Introduction+to+diffraction+and+the+Rietveld+method%2C+Corso%3A&gsl=psy-ab.12...9880016.9880016.0.9881253.1.1.0.0.0.0.526.526.5-1.1.0....0...1c..64.psy-ab..0.0.0....0.lQn6vEOuryo. Accessed 22 Nov 2017

  26. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  27. Kittel, C.: Introduction to solid state physics, 7th edn., p 425. Wiley, New York (1996)

    Google Scholar 

  28. Torrent, J., Barron, V.: Encyclopedia of surface and colloid science. Marcel Dekker, Inc., New York (2002)

    Google Scholar 

  29. Johansson, M.B., Baldissera, G., Valyukh, I., Persson, C., Arwin, H., Niklasson, G.A., Osterlund, L.: Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations. J. Phys.: Condens. Matter 25, 205502 (2013). 11 pp

    ADS  Google Scholar 

  30. Tauc, J., Abelesn, F (eds.): Optical properties of solids. North Holland (1969)

  31. Cole, B., Marsen, B., Miller, E., Yan, Y., To, B., Jones, K., Al-Jassim, M.: Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C 112, 5213–5220 (2008)

    Article  Google Scholar 

  32. Song, H., Li, Y., Lou, Z., Xiao, M., Hu, L., Ye, Z., Zhu, L.: Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B: Environ. 166–167, 112–120 (2015)

    Article  Google Scholar 

  33. Shen, Y., Yan, P., Yang, Y., Hu, F., Xiao, Y., Pan, L., Li, Z.: Hydrothermal synthesis and studies on photochromic properties of Al doped WO3 powder. J. Alloys Compds 629, 27–31 (2015)

    Article  Google Scholar 

  34. Hariharan, V., Aroulmoji, V., Prabakaran, K., Gnanavel, B., Parthibavarman, M., Sathyapriya, R., Kanagaraj, M.: Magnetic and electrochemical behaviour of cobalt doped tungsten oxide (WO3) nanomaterials by microwave irradiation method. J. Alloys Compds 689, 41–47 (2016)

    Article  Google Scholar 

  35. Dakhel, A.A.: Hydrogenation tuned the created ferromagnetic properties of Ni-doped nano-ZnO. Appl. Phys. A 123, 214 (2017). 8 pages

    Article  ADS  Google Scholar 

  36. Gerosa, M., Bottani, C.E., Caramella, L., Onida, G., Di Valentin, C., Pacchioni, G.: Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: the case of oxygen vacancies in metal oxides. J. Chem. Phys. 143, 134702 (2015). 9 pages

    Article  ADS  Google Scholar 

  37. Aguir, K., Lemire, C., Lollman, D.B.B.: Electrical properties of reactively sputtered WO3 thin films as ozone gas sensor. Sens. Actuators B 84, 1–5 (2002)

    Article  Google Scholar 

  38. Wang, H., Dong, X., Peng, S., Dong, L., Wang, Y.: Improvement of thermoelectric properties of WO3 ceramics by ZnO addition. J. Alloys Compds 527, 204–209 (2012)

    Article  Google Scholar 

  39. Polaczek, A., Pekala, M., Obuszko, Z.: Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides. J. Phys.: Condens. Matter 6, 7909–7919 (1994)

    ADS  Google Scholar 

  40. The official web page of the University of the West Indies at Mona, Jamaica. The Department of Chemistry. http://wwwchem.uwimona.edu.jm/spectra/MagMom.html. Accessed 22 Nov 2017

  41. Seo, S.-Y., Kwak, C.-H., Kim, S.-H., Park, S.-H., Lee, I.-J., Han, S.-W.: Synthesis and characterization of ferromagnetic Zn1−x Co x O films. J. Cryst. Growth 346, 56–60 (2012)

    Article  ADS  Google Scholar 

  42. Gao, Q., Dai, Y., Li, C., Yang, L., Li, X., Cui, C.: Correlation between oxygen vacancies and dopant concentration in Mn-doped ZnO nanoparticles synthesized by co-precipitation technique. Ixygen J. Alloys Compds 684, 669–676 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Study of Semimagnetic Mn-Doped WO3 Nanoparticles Synthesised by Precipitation Method: Hydrogenation Creates a Promising DMS. J Supercond Nov Magn 31, 2039–2046 (2018). https://doi.org/10.1007/s10948-017-4430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4430-9

Keywords

Navigation