Skip to main content
Log in

MgB2 with Addition of Cubic BN and Ge2C6H10O7 Obtained by Spark Plasma Sintering Technique

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

High density (94–98% of the theoretical density) MgB2 samples added with C6H10Ge2O7 and cubic BN with compositions (MgB2)1-x(Ge2C6H10O7)0.0028(cBN)x (x = 0.003, 0.005, 0.007, 0.01) and (MgB2)1-y(Ge2C6H10O7)y(cBN)0.005 (y = 0.0014, 0.0028, 0.005, 0.0075) were obtained by spark plasma sintering technique. For optimum doped samples with x = 0.005–0.007 and y = 0.0028–0.005, a weak enhancement of zero-field critical current density Jc0, irreversibility field Hirr, and volume pinning force Fp,max was determined. This behavior is very different from similar samples added with a single additive for which Hirr has a large enhancement. Consequently, it suggests the presence of opposite structural and microstructural effects induced by the additives. These effects, on the one hand, are discussed to decrease the sensitivity of MgB2 superconducting properties in the co-added samples comparative to samples added with C6H10Ge2O7, and, on the other hand, they contribute to anomalies that were found when assessing the pinning force–related parameters by the universal scaling law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature 410, 186–189 (2001). https://doi.org/10.1103/PhysRevB.59.10769

    Article  ADS  Google Scholar 

  2. Eisterer, M.: Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 20, R47–R73 (2007). https://doi.org/10.1088/0953-2048/20/12/R01

    Article  ADS  Google Scholar 

  3. Mudgel, M., Chandra, L.S.S., Ganesan, V., Bhalla, G.L., Kishan, H., Awana, V.P.S.: Enhanced critical parameters of nanocarbon doped MgB2 superconductor. J. Appl. Phys. 106, 033904 (2009). https://doi.org/10.1063/1.3186048

    Article  ADS  Google Scholar 

  4. Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., Tomsic, M.: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419–3421 (2002). https://doi.org/10.1063/1.1517398

    Article  ADS  Google Scholar 

  5. Miu, L., Aldica, G., Badica, P., Ivan, I., Miu, D., Jakob, G.: Improvement of the critical current density of spark plasma sintered MgB2 by C60 addition. Supercond. Sci. Technol. 23, 095002 (2010). https://doi.org/10.1088/0953-2048/23/9/095002

    Article  ADS  Google Scholar 

  6. Batalu, D., Aldica, G., Popa, S., Miu, L., Enculescu, M., Negrea, R.F., Pasuk, I., Badica, P.: High magnetic field enhancement of the critical current density by Ge, GeO2 and Ge2C6H10O7 additions to MgB2. Scr. Mater. 82, 61–64 (2014). https://doi.org/10.1016/j.scriptamat.2014.03.024

    Article  Google Scholar 

  7. Kim, J.H., Oh, S., Heo, Y.U., Hata, S., Kumakura, H., Matsumoto, A., Mitsuhara, M., Choi, S., Shimada, Y., Maeda, M., MacManus-Driscoll, J.L., Dou, S.X.: Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi. NPG Asia Mater. 4, e3 (2012). https://doi.org/10.1038/am.2012.3

    Article  Google Scholar 

  8. Birajdar, B., Peranio, N., Eibl, O.: Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes. Supercond. Sci. Technol. 21, 073001 (2008). https://doi.org/10.1088/0953-2048/21/7/073001

    Article  ADS  Google Scholar 

  9. Birajdar, B., Eibl, O.: Microstructure-critical current density model for MgB2 wires and tapes. J. Appl. Phys. 105, 033903 (2009). https://doi.org/10.1063/1.3068361

    Article  ADS  Google Scholar 

  10. Jirsa, M., Rameš, M., Miryala, M., Svora, P., Duchoň, J., Molnárová, O., Arvapalli, S.S., Murakami, M.: Flux pinning and microstructure of a bulk MgB2 doped with diverse additives. Supercond. Sci. Technol. 33, 094007 (2020). https://doi.org/10.1088/1361-6668/aba01c

    Article  ADS  Google Scholar 

  11. Da Silva, L.B.S., Serrano, G., Serquis, A., Metzner, V.C.V., Rodrigues, D.: Study of TaB2 and SiC additions on the properties of MgB2 superconducting bulks. Supercond. Sci. Technol. 28, 025008 (2015). https://doi.org/10.1088/0953-2048/28/2/025008

    Article  ADS  Google Scholar 

  12. Badica, P., Aldica, G., Burdusel, M., Popa, S., Negrea, R.F., Enculescu, M., Pasuk, I., Miu, L.: Significant enhancement of the critical current density for cubic BN addition into ex situ spark plasma sintered MgB2. Supercond. Sci. Technol. 27, 095013 (2014). https://doi.org/10.1088/0953-2048/27/9/095013

    Article  ADS  Google Scholar 

  13. Mikheenko, P., Chen, S.K., MacManus-Driscoll, J.L.: Minute pinning and doping additions for strong, 20 K, in-field critical current improvement in MgB2. Appl. Phys. Lett. 91, 202508 (2007). https://doi.org/10.1063/1.2814060

    Article  ADS  Google Scholar 

  14. Yang, Y., Zhao, D., Shen, T.M., Li, G., Zhang, Y., Feng, Y., Cheng, C.H., Zhang, Y.P., Zhao, Y.: Flux pinning behaviors of Ti and C co-doped MgB2 superconductors. Phys. C Supercond. its Appl. 468, 1202–1205 (2008). https://doi.org/10.1016/j.physc.2008.05.032

    Article  ADS  Google Scholar 

  15. Zhang, X., Yanwei, M., Wang, D., Gao, Z., Wang, L., Qi, Y., Awaji, S., Watanabe, K., Zheng, D.: Co-doping effect of nanoscale C and SiC on MgB2 superconductor. IEEE Trans. Appl. Supercond. 19, 2694–2697 (2009). https://doi.org/10.1109/TASC.2009.2018027

    Article  ADS  Google Scholar 

  16. Dyson, J., Rinaldi, D., Barucca, G., Albertini, G., Sprio, S., Tampieri, A.: Flux pinning in Y- and Ag-doped MgB2. Adv. Mater. Phys. Chem. 05, 426–438 (2015). https://doi.org/10.4236/ampc.2015.510043

    Article  Google Scholar 

  17. Aldica, G., Batalu, D., Popa, S., Ivan, I., Nita, P., Sakka, Y., Vasylkiv, O., Miu, L., Pasuk, I., Badica, P.: Spark plasma sintering of MgB2 in the two-temperature route. Phys. C. 477, 43–50 (2012). https://doi.org/10.1016/j.physc.2012.01.023

    Article  ADS  Google Scholar 

  18. Murakami, A., Iwamoto, A., Noudem, J.G.: Mechanical properties of bulk MgB2 superconductors processed by spark plasma sintering at various temperatures. IEEE Trans. Appl. Supercond. 28, 4–7 (2018). https://doi.org/10.1109/TASC.2017.2786210

    Article  Google Scholar 

  19. Sandu, V., Aldica, G., Badica, P., Groza, J.R., Nita, P.: Preparation of pure and doped MgB2 by the field-assisted sintering technique and superconducting properties. Supercond. Sci. Technol. 20, 836–842 (2007). https://doi.org/10.1088/0953-2048/20/8/020

    Article  ADS  Google Scholar 

  20. Koblischka, M.R., Wiederhold, A., Koblischka-Veneva, A., Chang, C., Berger, K., Nouailhetas, Q., Douine, B., Murakami, M.: On the origin of the sharp, low-field pinning force peaks in MgB2 superconductors. AIP Adv. 10, 015035 (2020). https://doi.org/10.1063/1.5133765

    Article  ADS  Google Scholar 

  21. Dadiel, J.L., Kumar Naik, S.P., Peczkowski, P., Sugiyama, J., Ogino, H., Sakai, N., Kazuya, Y., Warski, T., Wojcik, A., Oka, T., Murakami, M.: Synthesis of dense MgB2 superconductor via in situ and ex situ spark plasma sintering method. Materials (Basel). 14, 7395 (2021)

  22. Koblischka, M.R., Wiederhold, A., Koblischka-Veneva, A., Chang, C.: Pinning force scaling analysis of polycrystalline MgB2. J. Supercond. Nov. Magn. 33, 3333–3339 (2020). https://doi.org/10.1007/s10948-020-05456-8

    Article  Google Scholar 

  23. Jung, S.G., Pham, D., Han, Y., Lee, J.M., Kang, W.N., Kim, C., Yeo, S., Jun, B.H., Park, T.: Improvement of bulk superconducting current capability of MgB2 films using surface degradation. Scr. Mater. 209, 114424 (2022). https://doi.org/10.1016/j.scriptamat.2021.114424

    Article  Google Scholar 

  24. Naito, T., Endo, Y., Fujishiro, H.: Optimization of vortex pinning at grain boundaries on ex-situ MgB2 bulks synthesized by spark plasma sintering. Supercond. Sci. Technol. 30, 095007 (2017). https://doi.org/10.1088/1361-6668/aa6d14

    Article  ADS  Google Scholar 

  25. Marks, G.W., Monson, L.A.: Effect of certain group IV oxides on dielectric constant and dissipation factor of barium titanate. Ind. Eng. Chemistry. 47, 1611 (1955). https://doi.org/10.1021/ie50548a044

  26. Lutterotti, L.: Total pattern fitting for the combined size – strain – stress – texture determination in thin film diffraction. Nucl. Inst. Methods Phys. Res. B. 268, 334–340 (2010). https://doi.org/10.1016/j.nimb.2009.09.053

    Article  ADS  Google Scholar 

  27. Bean, C.P.: Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). https://doi.org/10.1103/PhysRevLett.8.250

    Article  ADS  MATH  Google Scholar 

  28. Awana, V.P.S., Isobe, M., Singh, K.P., Takayama-Muromachi, E., Kishan, H.: Fluxoid jump coupled high critical current density of nano-Co3O4 doped MgB2. Supercond. Sci. Technol. 19, 551–555 (2006). https://doi.org/10.1088/0953-2048/19/6/023

    Article  ADS  Google Scholar 

  29. Felner, I., Awana, V.P.S., Mudgel, M., Kishan, H.: Avalanche of flux jumps in polycrystalline MgB2 superconductor. J. Appl. Phys. 101, 09G101 (2007). https://doi.org/10.1063/1.2669959

    Article  Google Scholar 

  30. Badica, P., Aldica, G., Ionescu, A.M., Burdusel, M., Batalu, D.: The influence of different additives on MgB2 superconductor obtained by ex situ spark plasma sintering: pinning force aspects. In: Nishikawa, H., Iwata, N., Endo, T., Takamura, Y., Lee, G.H., and Mele, P. (eds.) Correlated Functional Oxides: Nanocomposites and Heterostrutures. p. 75. Springer (2017)

  31. Batalu, D., Aldica, G., Badica, P.: Ge2C6H10O7-added MgB2 superconductor obtained by ex-situ spark plasma sintering. IEEE T. Appl. Supercond. 26, 1–4 (2016). https://doi.org/10.1109/TASC.2016.2533560

    Article  Google Scholar 

  32. Avdeev, M., Jorgensen, J.D., Ribeiro, R.A., Bud’ko, S.L., Canfield, P.C.: Crystal chemistry of carbon-substituted MgB2. Phys. C. 387, 301–306 (2003). https://doi.org/10.1016/S0921-4534(03)00722-6

  33. Badica, P., Aldica, G., Grigoroscuta, M.A., Burdusel, M., Pasuk, I., Batalu, D., Berger, K., Koblischka-Veneva, A., Koblischka, M.R.: Reproducibility of small Ge2C6H10O7-added MgB2 bulks fabricated by ex situ spark plasma sintering used in compound bulk magnets with a trapped magnetic field above 5 T. Sci. Rep. 10, 1–11 (2020). https://doi.org/10.1038/s41598-020-67463-y

    Article  Google Scholar 

  34. Dew-Hughes, D.: Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293–305 (1974). https://doi.org/10.1080/14786439808206556

    Article  ADS  Google Scholar 

  35. Sandu, V.: Pinning-force scaling and its limitation in intermediate and high temperature superconductors. Mod. Phys. Lett. B. 26, 1230007 (2012). https://doi.org/10.1142/S0217984912300074

    Article  ADS  MATH  Google Scholar 

  36. Martínez, E., Mikheenko, P., Martínez-López, M., Millán, A., Bevan, A., Abell, J.S.: Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B. 75, 134515 (2007). https://doi.org/10.1103/PhysRevB.75.134515

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank C. Locovei for help with XRD analysis.

Funding

This research was funded by UEFISCDI the projects PN030101 (21N/2019), POC 37_697 no 28/01.09.2016 REBMAT and European Cooperation in Science and Technology through COST Action 19108 and COST Action 16218.

Author information

Authors and Affiliations

Authors

Contributions

Conception, design, and methodology of the study were contributed by Alina Marinela Ionescu, Petre Badica, and Gheorghe Aldica. Material preparation was performed by Mihai Alexandru Grigoroscuta and Mihail Burdusel. Magnetic data collection was performed by Stelian Popa. X-ray diffraction measurements and Rietveld refinements were performed by Iuliana Pasuk. SEM observations were performed by Monica Enculescu and Petre Badica. Data analysis was performed by Alina Marinela Ionescu, Viorel Sandu, Lucica Miu, Gheorghe Aldica, and Petre Badica. The first draft of the manuscript was written by Alina Marinela Ionescu, Gheorghe Aldica, and Petre Badica, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to P. Badica.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionescu, A.M., Aldica, G., Popa, S. et al. MgB2 with Addition of Cubic BN and Ge2C6H10O7 Obtained by Spark Plasma Sintering Technique. J Supercond Nov Magn 35, 3467–3476 (2022). https://doi.org/10.1007/s10948-022-06350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06350-1

Keywords

Navigation