Skip to main content
Log in

Chromium(III) Hydroxide Solubility in the Aqueous K+-H+-OH-CO2-HCO 3 -CO 2−3 -H2O System: A Thermodynamic Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3–13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol⋅kg−1) in the presence of 0.01 mol⋅dm−3 KOH and KHCO3 concentrations (0.001 to 0.826 mol⋅kg−1) at room temperature (22±2 °C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3) 2−2 and Cr(OH)4CO 3−3 ] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log 10 K° values of reactions involving these species [{Cr(OH)3(am) + 2CO2(g)Cr(OH)(CO3) 2−2 +2H+} and {Cr(OH)3(am) + OH+CO 2−3 Cr(OH)4CO 3−3 }] were found to be −(19.07±0.41) and −(4.19±0.19), respectively. No other data on any Cr(III)-carbonato complexes are available for comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fruchter, J.S.: In situ treatment of chromium-contaminated groundwater. Environ. Sci. Technol. 36, 464A–472A (2002)

    Article  CAS  Google Scholar 

  2. Hrma, P., Vienna, J., Crum, J., Piepel, G., Mika, M.: Liquidus temperature of high-level waste borosilicate glasses with spinel primary phase. Mater. Res. Soc. Proc. 608, 671–676 (2000)

    CAS  Google Scholar 

  3. Swanson, J.L.: Detailed Description of First Example Flowsheet. Clean Option: An Alternative Strategy for Hanford Tank Waste Remediation, vol. 2. Pacific Northwest National Laboratory, Richland (1993)

    Google Scholar 

  4. Lumetta, G.J., Rapko, B.M.: Removal of chromium from Hanford tank sludges. Sep. Sci. Technol. 34, 1495–1506 (1999)

    CAS  Google Scholar 

  5. Rai, D., Hess, N.J., Rao, L., Zhang, Z., Felmy, A.R., Moore, D.A., Clark, S.B., Lumetta, G.J.: Thermodynamic model for the solubility of Cr(OH)3(am) in concentrated NaOH and NaOH-NaNO3 solutions. J. Solution Chem. 31, 343–367 (2002)

    Article  CAS  Google Scholar 

  6. Rai, D., Moore, D.A., Hess, N.J., Rao, L., Clark, S.B.: Chromium(III) hydroxide solubility in the aqueous Na+-OH-H2PO 4 -HPO 2−4 -PO 3−4 -H2O System: A thermodynamic model. J. Solution Chem. 33, 1213–1242 (2004)

    Article  CAS  Google Scholar 

  7. Rai, D., Sass, B.M., Moore, D.A.: Cr(III) hydrolysis constants and solubility of Cr(III) hydroxide. Inorg. Chem. 26, 345–349 (1987)

    Article  CAS  Google Scholar 

  8. Sass, B.M., Rai, D.: The solubility of amorphous Cr(III)-Fe(III) hydroxide solid solutions. Inorg. Chem. 26, 2228–2232 (1987)

    Article  CAS  Google Scholar 

  9. Serne, R.J., Wyatt, G.A., Mattigod, S.V., Onishi, Y., Doctor, P.G., Bjornstad, B.N., Powell, M.R., Liljegren, L.M., Westsik, J., Aimo, N.J., Recknagle, K.P., Golcar, G.R., Miley, T.B., Holdren, G.R., Jeppson, D.W., Biyani, R.K., Barney., G.S.: Fluid Dynamic Particulate Segregation, Chemical Processes, Natural Ore Analog and Tank Inventory Discussions that Relate to the Potential for Criticality in Hanford Tanks. Westinghouse Hanford Company, Richland (1996)

    Google Scholar 

  10. Lindsay, W.L.: Chemical Equilibria in Soils. Wiley, New York (1979)

    Google Scholar 

  11. Weast, R.C.: Handbook of Chemistry and Physics, 53rd ed. The Chemical Rubber Company, Cleveland (1972)

    Google Scholar 

  12. Zhang, Z., Rao, L., Rai, D., Clark, S.B.: Characterization of chromium(III) hydroxide solids and their oxidation by hydrogen peroxide. Mater. Res. Soc. Symp. Proc. 824, CC6.5.1–CC6.5.6 (2004)

    Google Scholar 

  13. Wyckoff, R.W.G.: Crystal Structures. Krieger (1986)

  14. Christensen, A.N., Hansen, P., Lehmann, M.S.: Isotope effects in the bonds of α-CrOOH and α-CrOOD. J. Solid State Chem. 21, 325–329 (1977)

    Article  CAS  Google Scholar 

  15. Christensen, A.N., Hansen, P., Lehmann, M.S.: Isotope effects in the bonds of β-CrOOH and β-CrOOD. J. Solid State Chem. 19, 299–304 (1976)

    Article  CAS  Google Scholar 

  16. Pitzer, K.S.: Ion Interaction Approach: Theory and Data Correlation. Chapter 3, Activity Coefficients in Electrolyte Solutions. CRC, Boca Raton (1991)

    Google Scholar 

  17. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  18. Sterner, S.M., Felmy, A.R., Rustad, J.R., Pitzer, K.S.: Thermodynamic Analysis of Aqueous Solutions Using INSIGHT. Pacific Northwest National Laboratory, Richland (1997)

    Google Scholar 

  19. Felmy, A.R., Rai, D., Schramke, J.A., Ryan, J.L.: The solubility of Pu(OH)3 in dilute solution and in high-ionic-strength chloride brines. Radiochim. Acta 48, 29–35 (1989)

    CAS  Google Scholar 

  20. Rai, D., Felmy, A.R., Sterner, S.M., Moore, D.A., Mason, M.J., Novak, C.F.: The solubility of Th(IV) and U(IV) hydrous oxides in concentrated NaCl and MgCl2 solutions. Radiochim. Acta 79, 239–247 (1997)

    CAS  Google Scholar 

  21. Rai, D., Felmy, A.R., Szelmeczka, R.W.: Hydrolysis constants and ion interaction parameters for Cd(II) in zero to high concentrations of NaOH, KOH, and the solubility product of crystalline Cd(OH)2. J. Solution Chem. 375, 375–390 (1991)

    Article  Google Scholar 

  22. Rai, D., Xia, Y., Hess, N.J., Strachan, D.M., McGrail, B.P.: Hydroxo and chloro complexes/ion-interactions of Hf4+ and the solubility product of HfO2(am). J. Solution Chem. 30, 949–967 (2001)

    Article  CAS  Google Scholar 

  23. Becke, A.D.: A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98, 1372–1377 (1993)

    Article  CAS  Google Scholar 

  24. Martin, R.L., Hay, P.J., Pratt, L.R.: Hydrolysis of ferric ion in water and conformational equilibrium. J. Phys. Chem. A 102, 3565–3573 (1998)

    Article  CAS  Google Scholar 

  25. Rosso, K.M., Morgan, J.J.: Outer-sphere electron transfer kinetics of metal ion oxidation by molecular oxygen. Geochim. Cosmochim. Acta 66, 4223–4233 (2002)

    Article  CAS  Google Scholar 

  26. Rosso, K.M., Rustad, J.R.: Ab initio calculation of homogeneous outer sphere electron transfer rates: Application to M(OH2) 3+/2+6 redox couples. J. Phys. Chem. A 104, 6718–6725 (2000)

    Article  CAS  Google Scholar 

  27. Rosso, K.M., Smith, D.M.A., Dupuis, M.: Aspects of aqueous iron and manganese (II/III) self-exchange electron transfer reactions. J. Phys. Chem. 108, 5242–5248 (2004)

    CAS  Google Scholar 

  28. Apra, E., Bylaska, E.J., Jong, W.D., Hackler, M.T., Hirata, S., Pollack, L., Smith, D.M.A., Straatsma, T.P., Windus, T.L., Harrison, R.J., Nieplocha, J., Tipparaju, V., Kumar, M., Brown, E., Cisneros, G., Dupuis, M., Fann, G.I., Fruchtl, H., Garza, J., Hirao, K., Kendall, R., Nichols, J.A., Tsemekhman, K., Valiev, M., Wolinski, K., Anchell, J., Bernholdt, D., Borowski, P., Clark, T., Clerc, D., Dachsel, H., Deegan, M., Dyall, K., Elwood, D., Glendening, E., Gutowski, M., Hess, A., Jaffe, J., Johnson, B., Ju, J., Kobayashi, H., Kutteh, R., Lin, Z., Littlefield, R., Long, X., Meng, B., Nakajima, T., Niu, S., Rosing, M., Sandrone, G., Stave, M., Taylor, H., Thomas, G., Lenthe, J.V., Wong, A., Zhang, Z.: NWChem: A Computational Chemistry Package Designed to Run on High-Performance Parallel Supercomputers, Version 4.5. Pacific Northwest National Laboratory, Richland (2003)

    Google Scholar 

  29. Schafer, A., Huber, C., Ahlrichs, R.: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994)

    Article  Google Scholar 

  30. Krishnan, R., Binkley, J.S., Seeger, R., Pople, J.A.: Self-consistent molecular orbital methods. 20. Basis set for correlated wavefunctions. J. Chem. Phys. 72, 650–654 (1980)

    Article  CAS  Google Scholar 

  31. Klamt, A.: Conductor-like screening model for real solvents—a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995)

    Article  CAS  Google Scholar 

  32. Bylaska, E.J., Dixon, D.A., Felmy, A.R.: The free energies of reactions of chlorinated methanes with aqueous monovalent anions: Application of ab initio electronic structure theory. J. Phys. Chem. A 104, 610–617 (2000)

    Article  CAS  Google Scholar 

  33. Teo, B.K.: Inorganic Chemistry Concepts 9: EXAFS: Basic Principles and Data Analysis. Springer, New York (1985)

    Google Scholar 

  34. Fujihara, T., Ichikawa, M., Gustafsson, T., Olovsson, I., Tsuchida, T.: Powder-neutron diffraction studies of geometric isotope and hydrogen-bonding effects in β-CrOOH. J. Phys. Chem. Solids 63, 309–315 (2002)

    Article  CAS  Google Scholar 

  35. Corker, J.M., Evans, J., Rummey, J.M.: EXAFS studies of pillared clay catalysts. Mater. Chem. Phys. 29, 201–209 (1991)

    Article  CAS  Google Scholar 

  36. Fendorf, S.E., Lamble, G.M., Stapleton, M.G., Kelley, M.J., Sparks, D.L.: Mechanisms of chromium(III) sorption on silica. 1. Cr(III) surface structure derived by extended absorption fine structure spectroscopy. Environ. Sci. Technol. 28, 284–289 (1994)

    Article  CAS  Google Scholar 

  37. Harvie, C.E., Moller, N., Weare, J.: The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strength at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  38. Rao, L., Rai, D., Felmy, A.R., Fulton, R.W.: Solubility of NaNd(CO3)2⋅6H2O in concentrated Na2CO3 and NaHCO3 solutions. Radiochim. Acta 75, 141–147 (1996)

    CAS  Google Scholar 

  39. Ziemniak, S.E., Jones, M.E., Combs, K.E.S.: Solubility and phase behavior of Cr(III) oxides in alkaline media at elevated temperatures. J. Solution Chem. 27, 33–66 (1998)

    Article  CAS  Google Scholar 

  40. Richens, D.T.: The Chemistry of Aqua Ions. Wiley, New York (1997)

    Google Scholar 

  41. Swaddle, T.W., Rosenqvist, J., Yu, P., Bylaska, E., Phillips, B.L., Casey, W.H.: Kinetic evidence for five-coordination in AlOH(aq)(2+) ion. Science 308, 1450–1453 (2005)

    Article  CAS  Google Scholar 

  42. Wesolowski, D.J.: Aluminum speciation and equilibria in aqueous solution: I. The Solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100 degrees C. Geochim. Cosmochim. Acta 56, 1065–1091 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanpat Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Moore, D.A., Hess, N.J. et al. Chromium(III) Hydroxide Solubility in the Aqueous K+-H+-OH-CO2-HCO 3 -CO 2−3 -H2O System: A Thermodynamic Model. J Solution Chem 36, 1261–1285 (2007). https://doi.org/10.1007/s10953-007-9179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9179-5

Keywords

Navigation