Skip to main content
Log in

Thermodynamic Model for ThO2(am) Solubility in Alkaline Silica Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

No thermodynamic data for Th complexes with aqueous Si are available. To obtain such data, extensive studies on ThO2(am) solubility were carried out as functions of: (1) a wide range of aqueous silica concentrations (0.0004 to 0.14 mol⋅L−1) at fixed pH values of about 10, 11, 12, and 13; and (2) and variable pH (ranging from 10 to 13.3) at fixed aqueous Si concentrations of about 0.006 mol⋅L−1 or 0.018 mol⋅L−1. The samples were equilibrated over long periods (ranging up to 487 days), and the data showed that steady-state concentrations were reached in < 29 days. X-ray diffraction, FTIR, and Raman analyses of the equilibrated solid phases showed that the Th solids were amorphous ThO2(am) containing some adsorbed Si. The solubility of ThO2(am) at pH values ranging from 10 to 13.3 at fixed 0.018 mol⋅L−1 aqueous Si concentrations decreases rapidly with an increase in pH, and increases dramatically with an increase in Si concentrations beyond about 0.003 mol⋅L−1 at fixed pH values > 10. The data were interpreted using both the Pitzer and SIT models, and required only the inclusion of one mixed-hydroxy-silica complex of Th [Th(OH)3(H3SiO4) 2−3 ]. Both models provided similar complexation constant values for the formation of this species. Density functional theory calculations predict complexes of this stoichiometry, having six-fold coordination of the Th cation, to be structurally stable. Predictions based on the fitted value of log 10 K 0=−18.5±0.7 for the ThO2(am) solubility reaction involving Th(OH)3(H3SiO4) 2−3 [ThO2(am)+3H4SiO4+H2OTh(OH)3(H3SiO4) 2−3 +2H+], along with the thermodynamic data for aqueous Si species reported in the literature, agreed closely with the extensive experimental data and showed that under alkaline conditions aqueous Si makes very strong complexes with Th.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rai, D., Yui, M., Hess, N.J., Felmy, A.R., Moore, D.A.: Thorium reactions in borosilicate-glass/water systems. Radiochim. Acta 93, 443–455 (2005). doi:10.1524/ract.2005.93.8.443

    Article  CAS  Google Scholar 

  2. Peretroukhine, V., Riglet-Martial, C., Capdevila, H., Calmon, V., Bienvenu, P., Laszak, I.: Effect of soluble silicates on the solubility of thorium (IV) hydrous oxide. J. Nucl. Sci. Technol. Suppl. 3, 516–519 (2002)

    Google Scholar 

  3. Felmy, A.R.: A computerized chemical equilibrium model using a constrained minimization of the Gibbs free energy. PNL-728, Pacific Northwest National Laboratory, Richland (1990)

  4. Sterner, S.M., Felmy, A.R., Rustad, J.R., Pitzer, K.S.: Thermodynamic analysis of aqueous solutions using INSIGHT. Pacific Northwest National Laboratory, Richland (1997)

  5. Olin, A., Nolang, B., Osadchii, E.G., Rosen, E.: Chemical Thermodynamics of Selenium. Elsevier, Amsterdam (2005)

    Google Scholar 

  6. Pitzer, K.S.: Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  7. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973). doi:10.1021/j100638a009

    Article  CAS  Google Scholar 

  8. Felmy, A.R., Weare, J.H.: The prediction of borate mineral equilibria in natural waters: Application to Searles lake, California. Geochim. Cosmochim. Acta 50, 2771–2783 (1986). doi:10.1016/0016-7037(86)90226-7

    Article  CAS  Google Scholar 

  9. Felmy, A.R., Rai, D., Schramke, J.A., Ryan, J.L.: The solubility of Pu(OH)3 in dilute solution and in high-ionic-strength chloride brines. Radiochim. Acta 48, 29–35 (1989)

    CAS  Google Scholar 

  10. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics of Uranium. North-Holland, Amsterdam (1992)

    Google Scholar 

  11. Felmy, A.R., Cho, H., Rustad, J.R., Mason, M.J.: An aqueous thermodynamic model for polymerized silica species to high ionic strength. J. Solution Chem. 30, 509–525 (2001). doi:10.1023/A:1010382701742

    Article  CAS  Google Scholar 

  12. Klamt, A.: Conductor-like screening model for real solvents—A new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995). doi:10.1021/j100007a062

    Article  CAS  Google Scholar 

  13. Becke, A.D.: A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993). doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  14. Cao, X.Y., Dolg, M.: Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coord. Chem. Rev. 250(7–8), 900–910 (2006)

    Article  CAS  Google Scholar 

  15. Binkley, J.S., Pople, J.A., Hehre, W.J.: Self-consistent molecular orbital methods. 21. Small split-valence basis sets for 1st row elements. J. Am. Chem. Soc. 102(3), 939–947 (1980). doi:10.1021/ja00523a008

    Article  CAS  Google Scholar 

  16. Tsushima, S., Yang, T., Mochizuki, Y., Okamoto, Y.: Ab initio study on the structures of Th(IV) hydrate and its hydrolysis products in aqueous solution. Chem. Phys. Lett. 375, 204–212 (2003). doi:10.1016/S0009-2614(03)00806-6

    Article  CAS  Google Scholar 

  17. Apra, E., Windus, T.L., Straatsma, T.P., Bylaska, E.J., de Jong, W., Kowalski, K., Hackler, M.T., Hirata, S., Valiev, M., Hackler, M.T., Zhao, Y., Harrison, R.J., Dupuis, M., Smith, D.M.A., Nieplocha, J., Tipparaju, V., Krishnan, M., Auer, A.A., Brown, E., Cisneros, G., Fann, G.I., Fruchtl, H., Garza, J., Hirao, K., Kendall, R., Nichols, J.A., Tsemekhman, K., Wolinski, K., Anchell, J., Bernholdt, D., Borowski, P., Clark, T., Clerc, D., Dachsel, H., Deegan, M., Dyall, K., Elwood, D., Glendening, E., Gutowski, M., Hess, A., Jaffe, J., Johnson, B., Ju, J., Kobayashi, H., Kutteh, R., Lin, Z., Littlefield, R., Long, X., Meng, B., Nakajima, T., Niu, S., Pollack, L., Rosing, M., Sandrone, G., Stave, M., Taylor, H., Thomas, G., van Lenthe, J., Wong, A., Zhang, Z.: NWChem: A computational chemistry package designed to run on high-performance parallel supercomputers, Version 4.7. Pacific Northwest National Laboratory: Richland (2005)

  18. Żegliński, J., Piotrowski, G.P., Piękoś, R.: A study of interaction between hydrogen peroxide and silica gel by FTIR spectroscopy and quantum chemistry. J. Mol. Struct. 794, 83–91 (2006). doi:10.1016/j.molstruc.2006.01.043

    Article  Google Scholar 

  19. Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn. Wiley, New York (1986)

    Google Scholar 

  20. Hansen, H.C.B., Wetche, T.P., Raullund-Rasmussen, K., Borggaard, O.K.: Stability constants for silicate adsorbed to ferrihydrite. Clay Miner. 29, 341–350 (1994). doi:10.1180/claymin.1994.029.3.05

    Article  CAS  Google Scholar 

  21. Kusabiraki, K., Shiraishi, Y.: Infrared spectrum of vitreous fayalite. J. Non-Cryst. Solids 44, 365–368 (1981). doi:10.1016/0022-3093(81)90038-7

    Article  CAS  Google Scholar 

  22. Felmy, A.R., Rai, D., Sterner, S.M., Mason, M.J., Hess, N.J., Conradson, S.D.: Thermodynamic models for highly charged aqueous species: Solubility of Th(IV) hydrous oxide in concentrated NaHCO3 and Na2CO3 solutions. J. Solution Chem. 26, 233–248 (1997). doi:10.1007/BF02767996

    Article  CAS  Google Scholar 

  23. Rai, D., Felmy, A.R., Moore, D.A., Mason, M.J.: The solubility of Th(IV) and U(IV) hydrous oxides in concentrated NaHCO3 and Na2CO3 solutions. In: Materials Research Society Symposium Proceedings (1995)

  24. Ryan, J.L., Rai, D.: Thorium (IV). Hydrous oxide solubility. Inorg. Chem. 26, 4140–4142 (1987)

    Article  CAS  Google Scholar 

  25. Brendebach, B., Altmaier, M., Rothe, J., Neck, V., Denecke, M.A.: EXAFS study of aqueous ZrIV and ThIV complexes in alkaline CaCl2 solutions: Ca3[Zr(OH)6]4+ and Ca4[Th(OH)8]4+. Inorg. Chem. 46, 6804–6810 (2007). doi:10.1021/ic070318t

    Article  CAS  Google Scholar 

  26. Farges, F.: Structural environment around Th4+ in silicate glasses: Implications for the geochemistry of incompatible Me4+ elements. Geochim. Cosmochim. Acta 55, 3303–3319 (1991). doi:10.1016/0016-7037(91)90490-V

    Article  CAS  Google Scholar 

  27. Wilson, R.E., Skanthakumar, S., Burns, P.C., Soderholm, L.: Structure of the homoleptic thorium(IV) aqua ion [Th(H2O)10]Br4. Angerwandte Chemie Int. Edn. 46, 8043–8045 (2007)

    Article  CAS  Google Scholar 

  28. Wilson, R.E., Skanthakumar, S., Sigmon, G., Burns, P.C., Soderholm, L.: Structures of dimeric hydrolysis products of thorium. Inorg. Chem. 46, 2368–2372 (2007). doi:10.1021/ic0617691

    Article  CAS  Google Scholar 

  29. Henning, C., Schmeide, K., Brendler, V., Moll, H., Tsushima, S., Scheinost, A.C.: EXAFS investigation of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution. Inorg. Chem. 46, 5882–5892 (2007). doi:10.1021/ic0619759

    Article  Google Scholar 

  30. Yang, T., Tsushima, S., Suzuki, A.: Quantum mechanical and molecular dynamical simulations on thorium(IV) hydrates in aqueous solution. J. Phys. Chem. A 105, 10439–10445 (2001). doi:10.1021/jp012387d

    Article  CAS  Google Scholar 

  31. Okamoto, Y., Mochizuki, Y., Tsushima, S.: Theoretical study of hydrolysis reactions of tetravalent thorium ion. Chem. Phys. Lett. 373, 213–217 (2003). doi:10.1016/S0009-2614(03)00592-X

    Article  CAS  Google Scholar 

  32. Azaroual, M., Fouillac, C., Matray, J.M.: Solubility of silica polymorphs in electrolyte solutions. 1. Activity coefficient of aqueous silica from 25 degrees to 250 degrees C, Pitzer’s parameterisation. Chem. Geol. 140, 155–165 (1997). doi:10.1016/S0009-2541(97)00046-6

    Article  CAS  Google Scholar 

  33. Hershey, J.P., Millero, F.J.: The dependence of the acidity constants of silicic-acid on NaCl concentration using Pitzer equations. Mar. Chem. 18, 101–105 (1986). doi:10.1016/0304-4203(86)90079-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanpat Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Yui, M., Moore, D.A. et al. Thermodynamic Model for ThO2(am) Solubility in Alkaline Silica Solutions. J Solution Chem 37, 1725–1746 (2008). https://doi.org/10.1007/s10953-008-9344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-008-9344-5

Keywords

Navigation