Skip to main content
Log in

PuPO4(cr, hyd.) Solubility Product and Pu3+ Complexes with Phosphate and Ethylenediaminetetraacetic Acid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

To determine the solubility product of PuPO4(cr, hyd.) and the complexation constants of Pu(III) with phosphate and EDTA, the solubility of PuPO4(cr, hyd.) was investigated as a function of: (1) time and pH (varied from 1.0 to 12.0), and at a fixed 0.00032 mol⋅L−1 phosphate concentration; (2) NaH2PO4 concentrations varying from 0.0001 mol⋅L−1 to 1.0 mol⋅L−1 and at a fixed pH of 2.5; (3) time and pH (varied from 1.3 to 13.0) at fixed concentrations of 0.00032 mol⋅L−1 phosphate and 0.0004 mol⋅L−1 or 0.002 mol⋅L−1 Na2H2EDTA; and (4) Na2H2EDTA concentrations varying from 0.00005 mol⋅L−1 to 0.0256 mol⋅L−1 at a fixed 0.00032 mol⋅L−1 phosphate concentration and at pH values of approximately 3.5, 10.6, and 12.6. A combination of solvent extraction and spectrophotometric techniques confirmed that the use of hydroquinone and Na2S2O4 helped maintain the Pu as Pu(III). The solubility data were interpreted using the Pitzer and SIT models, and both provided similar values for the solubility product of PuPO4(cr, hyd.) and for the formation constant of PuEDTA. The log 10 of the solubility product of PuPO4(cr, hyd.) [PuPO4(cr, hyd.) \(\rightleftarrows\) \(\mathrm{Pu}^{3+}+\mathrm{PO}_{4}^{3-}\)] was determined to be −(24.42±0.38). Pitzer modeling showed that phosphate interactions with Pu3+ were extremely weak and did not require any phosphate complexes [e.g., PuPO4(aq), \(\mathrm{PuH}_{2}\mathrm{PO}_{4}^{2+}\), \(\mathrm{Pu(H}_{2}\mathrm{PO}_{4})_{2}^{+}\), Pu(H2PO4)3(aq), and \(\mathrm{Pu(H}_{2}\mathrm{PO}_{4})_{4}^{-}\)] as proposed in existing literature, to explain the experimental solubility data. SIT modeling, however, required the inclusion of \(\mathrm{PuH}_{2}\mathrm{PO}_{4}^{2+}\) to explain the data in high NaH2PO4 concentrations; this illustrates the differences one can expect when using these two different chemical models to interpret the data. Of the Pu(III)-EDTA species, only PuEDTA was needed to interpret the experimental data over a large range of pH values (1.3–12.9) and EDTA concentrations (0.00005–0.256 mol⋅L−1). Calculations based on density functional theory support the existence of PuEDTA (with prospective stoichiometry as Pu(OH2)3EDTA) as the chemically and structurally stable species. The log 10 value of the complexation constant for the formation of PuEDTA [\(\mathrm{Pu}^{3+}+\mathrm{EDTA}^{4-}\rightleftarrows \mathrm{PuEDTA}^{-}\)] determined in this study is −20.15±0.59. The data also showed that PuHEDTA(aq), \(\mathrm{Pu(EDTA)}_{4}^{5-}\), Pu(EDTA)(HEDTA)4−, Pu(EDTA)(H2EDTA)3−, and Pu(EDTA)(H3EDTA)2−, although reported in the literature, have no region of dominance in the experimental range of variables investigated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rai, D., Moore, D.A., Rosso, K.M., Felmy, A.R., Bolton, H.J.: Environmental mobility of Pu(IV) in the presence of ethylenediaminetetraacetic acid: myth or reality. J. Solution Chem. 37, 957–986 (2008)

    Article  CAS  Google Scholar 

  2. Cauchetier, P., Guichard, C.: Etude electrochimique et spectrophotometrique des complexes des ions du plutonium avec l’EDTA. Premiere partie: plutonium(III) et (IV). Radiochim. Acta 19, 137–146 (1973)

    CAS  Google Scholar 

  3. Foreman, J.K., Smith, T.D.: The nature and stability of the complex ions formed by ter-, quadri-, and sexa-valent plutonium ions with ethylenediaminetetraacetic acid. Part I. pH titrations and ion-exchange studies. J. Chem. Soc. 1752–1758 (1957)

  4. Foreman, J.K., Smith, T.D.: The nature and stability of the complex ions formed by ter-, quadri-, and sexa-valent plutonium ions with ethylenediaminetetraacetic acid. Part II. Spectrophotometric studies. J. Chem. Soc. 1758–1762 (1957)

  5. Merciny, E., Gatez, J.M., Duyckaerts, G.: Constantes de formation des complexes de stoechiometrie 1:1 et 1:2 ainsi que des complexes mixtes formes entre le plutonium(III) et divers acides aminopolyacetiques. Anal. Chim. Acta 100, 329–342 (1978)

    Article  CAS  Google Scholar 

  6. Merciny, E., Gatez, J.M., Swennen, L., Duyckaerts, G.: Realisation et mise au point d’un appareil de titrage automatique de grande precision. Anal. Chim. Acta 78, 159–169 (1975)

    Article  CAS  Google Scholar 

  7. Moskvin, A.I., Artyukhin, P.I.: Determination of the composition and instability constants of Pu(III) ethylenediaminetetraacetate complexes by ion-exchange. Russ. J. Inorg. Chem. 4, 269–271 (1959)

    Google Scholar 

  8. Poczynajlo, A.: Potentiometric determination of Pu(III) complexes formed by citric acid, EDTA, DHTP, and DTPP. J. Radioanal. Nucl. Chem. 134, 97–108 (1989)

    Article  CAS  Google Scholar 

  9. Poczynajlo, A.: Extraction study of Pu(III)-EDTA chelates. J. Radioanal. Nucl. Chem. 148, 295–307 (1991)

    Article  CAS  Google Scholar 

  10. Stepanov, A.V., Makarova, T.P.: Electromigration investigation of the complexation of trivalent plutonium with solutions of ethylenediaminetetraacetic acid. Sov. Radiachem. 7, 663–668 (1965)

    Google Scholar 

  11. Hummel, W., Anderegg, G., Puigdomenech, I., Rao, L., Tochiyama, O.: Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni, and Zr with Selected Organic Ligands. Elsevier, Amsterdam (2005)

    Google Scholar 

  12. Boukhalfa, H., Reilly, S.D., Smith, W.H., Neu, M.: EDTA and mixed-ligand complexes of tetravalent and trivalent plutonium. Inorg. Chem. 43, 5816–5823 (2004)

    Article  CAS  Google Scholar 

  13. Lemire, R.J., Fuger, J., Nitsche, H., Potter, P.E., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, P., Wanner, H.: Chemical Thermodynamics of Neptunium and Plutonium. Elsevier, Amsterdam (2001)

    Google Scholar 

  14. Moskvin, A.I.: Investigation of the complex formation of trivalent plutonium, americium, and curium in phosphate solutions. Sov. Radiachem. 13, 688–693 (1971)

    Google Scholar 

  15. Rai, D., Felmy, A.R., Fulton, R.W.: Solubility and ion activity product of AmPO4xH2O(am). Radiochim. Acta 56, 7–14 (1992)

    CAS  Google Scholar 

  16. Rai, D., Felmy, A.R., Yui, M.: Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+-H+-\(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\)-\(\mathrm{HPO}_{4}^{2-}\)-OH-Cl-H2O system. J. Radioanal. Nucl. Chem. 256, 37–43 (2003)

    Article  CAS  Google Scholar 

  17. Felmy, A.R.: GMIN: A Computerized Chemical Equilibrium Model Using a Constrained Minimization of the Gibbs Free Energy. Pacific Northwest National Laboratory, Richland (1990)

    Google Scholar 

  18. Schramke, J.A., Rai, D., Choppin, G.R., Fulton, R.W.: Determination of aqueous plutonium oxidation states by solvent extraction. J. Radioanal. Nucl. Chem. 130, 333–346 (1989)

    Article  CAS  Google Scholar 

  19. Rai, D., Gorby, Y.A., Fredrickson, J.K., Moore, D.A., Yui, M.: Reductive dissolution of PuO2(am): the effect of Fe(II) and hydroquinone. J. Solution Chem. 31, 433–453 (2002)

    Article  CAS  Google Scholar 

  20. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, pp. 75–153. CRC Press, Boca Raton (1991)

    Google Scholar 

  21. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  22. Felmy, A.R., Weare, J.H.: The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California. Geochim. Cosmochim. Acta 50, 2771–2783 (1986)

    Article  CAS  Google Scholar 

  23. Felmy, A.R., Rai, D., Schramke, J.A., Ryan, J.L.: The solubility of Pu(OH)3 in dilute solution and in high-ionic-strength chloride brines. Radiochim. Acta 48, 29–35 (1989)

    CAS  Google Scholar 

  24. Felmy, A.R., Mason, M.J.: An aqueous thermodynamic model for the complexation of sodium and strontium with organic chelates valid to high ionic strength. I. Ethylenedinitrilotetraacetic acid (EDTA). J. Solution Chem. 32, 283–300 (2003)

    Article  CAS  Google Scholar 

  25. Pitzer, K.S., Silvester, L.F.: Thermodynamics of electrolytes. VII. Weak electrolytes including H3PO4. J. Solution Chem. 5, 269–278 (1976)

    Article  CAS  Google Scholar 

  26. Pokrovsky, O.S., Bronikowski, M.G., Moore, R.C., Choppin, G.R.: Interaction of neptunyl(V) and U(VI) with EDTA in NaCl media: experimental study and Pitzer modeling. Radiochim. Acta 80, 23–29 (1998)

    CAS  Google Scholar 

  27. Sterner, S.M., Felmy, A.R., Rustad, J.R., Pitzer, K.S.: Thermodynamic Analysis of Aqueous Solutions Using INSIGHT. Pacific Northwest National Laboratory, Richland (1997)

    Google Scholar 

  28. Fujiwara, K., Yamana, H., Fujii, T., Moriyama, H.: Solubility product of plutonium hydrous oxide. J. Nucl. Fuel Cycle Environ. 7, 17–23 (2001)

    CAS  Google Scholar 

  29. Rai, D., Bolton, H., Moore, D.A., Hess, N.J., Choppin, G.R.: Thermodynamic model for the solubility of PuO2(am) in the aqueous Na+-H+-OH-Cl-H2O-ethylenediaminetetraacetate system. Radiochim. Acta 89, 67–74 (2001)

    Article  CAS  Google Scholar 

  30. Guillaumont, R., Fanghanel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium. Elsevier, Amsterdam (2003)

    Google Scholar 

  31. Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  CAS  Google Scholar 

  32. Felmy, A.R., Rai, D.: Application of Pitzer’s equations for modeling the aqueous thermodynamics of actinide species in natural waters: a review. J. Solution Chem. 28, 537–557 (1999)

    Article  Google Scholar 

  33. Moskvin, A.I.: Complex formation of the actinides with anions of acids in aqueous solutions. Sov. Radiochem. 11, 447–449 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanpat Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Moore, D.A., Felmy, A.R. et al. PuPO4(cr, hyd.) Solubility Product and Pu3+ Complexes with Phosphate and Ethylenediaminetetraacetic Acid. J Solution Chem 39, 778–807 (2010). https://doi.org/10.1007/s10953-010-9541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9541-x

Keywords

Navigation