Skip to main content
Log in

Thermodynamic Model for BiPO4(cr) and Bi(OH)3(am) Solubility in the Aqueous Na+–H+\(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\)\(\mathrm{HPO}_{4}^{2-}\)\(\mathrm{PO}_{4}^{3-}\)–OH–Cl–H2O System

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Prior to this study no data for the solubility product of BiPO4(cr) or the complexation constants of Bi with phosphate were available. The solubility of BiPO4(cr) was studied at 23±2 °C from both the over- and under-saturation directions as functions of a wide range in time (6–309 days), pH values (0–15), and phosphate concentrations (reaching as high as 1.0 mol⋅kg−1). HCl or NaOH were used to obtain a range in pH values. Steady state concentrations and equilibrium were reached in <6 days. The data were interpreted using the SIT model. These extensive data provided a solubility product value for BiPO4(cr) and an upper limit value for the formation of BiPO4(aq). Because the aqueous system in this study involved relatively high concentrations of chloride, reliable values for the complexation constants of Bi with chloride were required to accurately interpret the solubility data. Therefore as a part of this investigation, existing Bi–Cl data were critically reviewed and used to obtain values of equilibrium constants for various Bi–Cl complexes at zero ionic strength along with the values for various SIT ion interaction parameters. Predictions based on these thermodynamic quantities agreed closely with our experimental data, the chloride concentrations of which ranged as high as 0.7 mol⋅kg−1. The study showed that BiPO4(cr) is stable at pH values <9.0. At pH values >9.0, Bi(OH)3(am) is the solubility controlling phase. Reliable values for the Bi(OH)3(am) solubility reactions involving Bi(OH)3(aq) and \(\mathrm{Bi}(\mathrm{OH})_{4}^{-}\) and the formation constants of these aqueous species are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rai, D., Felmy, A.R., Fulton, R.W.: Solubility of AmPO4xH2O(am). Power Reactor and Nuclear Fuels Development Corporation of Japan (1990)

  2. Rai, D., Felmy, A.R., Yui, M.: Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+–H+\(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\)\(\mathrm{HPO}_{4}^{2-}\)–OH–Cl–H2O system. J. Radioanal. Nucl. Chem. 256, 37–43 (2003)

    Article  CAS  Google Scholar 

  3. Lemire, R.J., Fuger, J., Nitsche, H., Potter, P.E., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, P., Wanner, H.: Chemical Thermodynamics of Neptunium and Plutonium. Elsevier, Amsterdam (2001)

    Google Scholar 

  4. Cleveland, J.M.: The Chemistry of Plutonium. American Nuclear Society, LaGrange Park (1979)

    Google Scholar 

  5. ICDD: The Powder Diffraction File (PDF). International Center for Diffraction Data (ICDD), Newtown Square

  6. Sterner, S.M., Felmy, A.R., Rustad, J.R., Pitzer, K.S.: Thermodynamic Analysis of Aqueous Solutions Using INSIGHT. Pacific Northwest National Laboratory, Richland (1997)

    Google Scholar 

  7. Rai, D.: Solubility product of Pu(IV) hydrous oxide and equilibrium constants of Pu(IV)/Pu(V), Pu(IV)/Pu(VI), and Pu(V)/Pu(VI) couples. Radiochim. Acta 35, 97–108 (1984)

    CAS  Google Scholar 

  8. Rand, M.H., Fuger, J., Grenthe, I., Neck, V., Rai, D.: Chemical Thermodynamics of Thorium. Nuclear Energy Agency, Organization for Economic Co-Operation and Development (2008)

  9. Felmy, A.R.: GMIN: A Computerized Chemical Equilibrium Model Using a Constrained Minimization of the Gibbs Free Energy. Pacific Northwest National Laboratory, Richland (1990)

    Google Scholar 

  10. Ahrland, S., Grenthe, I.: The stability of metal halide complexes in aqueous solution. Acta Chem. Scand. 11, 1111–1130 (1957)

    Article  CAS  Google Scholar 

  11. Ahrland, S., Grenthe, I.: Correction to “The stability of metal halide complexes in aqueous solution III. The chloride, bromide and iodide complexes of bismuth”. Acta Chem. Scand. 4, 932 (1961)

    Article  Google Scholar 

  12. Bond, A.M., Waugh, A.B.: AC polarography and its application to overcome the problem of DC polarographic maxima in the study of complexes ions. Electrochim. Acta 15, 1471–1482 (1970)

    Article  CAS  Google Scholar 

  13. Desideri, P., Pantani, F.: La riduzione del bismuto(III) all’elettrodo a goccia nelle soluzioni cloridriche. Ric. Sci. 29, 1436–1445 (1959)

    CAS  Google Scholar 

  14. Fedorov, V.A., Kalosh, T.N., Shmyd’ko, L.I.: Mixed chloronitratobismuth(III) complexes. Russ. J. Inorg. Chem. 19, 991–993 (1974)

    Google Scholar 

  15. Johansson, L.: The complex formation of bismuth(III) with chloride in aqueous solution. A solubility study. Acta Chem. Scand. 23, 548–556 (1969)

    Article  CAS  Google Scholar 

  16. Kankare, J.J.: Computation of equilibrium constants for multicomponent systems from spectophotometric data. Anal. Chem. 42, 1322–1326 (1970)

    Article  CAS  Google Scholar 

  17. Mironov, V.E., Kul’ba, F.Y., Fedorov, V.A., Nikitenko, T.F.: A potentiometric study of chloro-complexes of bismuth. Russ. J. Inorg. Chem. 8, 964–967 (1963)

    Google Scholar 

  18. Suganuma, H., Ono, K., Hataye, I.: A cation-exchange study of stability constants of complexes formed between bismuth(III) and nitrate or chloride ions. J. Radioanal. Nuclear Chem. 145, 167–173 (1990)

    Article  CAS  Google Scholar 

  19. Lothenbach, B., Ochs, M., Wanner, H., Yui, M.: Thermodynamic data for the speciation and solubility of Pd, Pb, Sn, Sb, Nd, and Bi in aqueous solutions. JNC TN8400 99-011. Japan Nuclear Cycle Development Institute, Now Japan Atomic Energy Agency (1999)

  20. Schumb, W.C., Rittner, E.S.: Polymorphism of bismuth trioxide. J. Am. Chem. Soc. 65, 1055–1066 (1943)

    Article  CAS  Google Scholar 

  21. Bidleman, T.F.: Bismuth-dithizone equilibria and hydrolysis of bismuth ion in aqueous solution. Anal. Chim. Acta 56, 221–231 (1971)

    Article  CAS  Google Scholar 

  22. Milanov, M., Roesch, F., Khalkin, V.A., Henniger, U., Hung, T.K.: Electromigration of ions of radionuclides without carriers in electrolytes. Hydrolysis of Bi(III) in aqueous solutions. Sov. Radiochem. 29, 18–25 (1987)

    Google Scholar 

  23. Kragen, J., Decnop-Weever, L.G.: Mixed hydroxide complex formation and solubility of bismuth in nitrate and perchlorate medium. Talanta 40, 485–490 (1993)

    Article  Google Scholar 

  24. Antonovich, V.P., Nevskaya, E.M., Shelikhina, E.I., Nazarenko, V.A.: Spectrophotometric determination of the hydrolysis constants of monomeric bismuth ions. Russ. J. Inorg. Chem. 20, 1642–1645 (1975)

    Google Scholar 

  25. Hataye, I., Suganuma, H., Ikegami, H., Kuchiki, T.: Solvent extraction study on the hydrolysis of tracer concentrations of bismuth(III) in high-temperature and nitrate solutions. Chem. Soc. Jpn. 55, 1475–1479 (1982)

    Article  CAS  Google Scholar 

  26. Laptev, Y.V., Kolonin, G.R.: Hydrolysis of bismuth(III) in high-temperature solutions. Russ. J. Inorg. Chem. 27, 2515–2520 (1982)

    CAS  Google Scholar 

  27. Sedova, A.A., Simonov, L.N., Mel’chakova, N.V.: The determination of the hydrolysis constants of monomeric bismuth(III) ions by the competing reaction involving the formation of its complex with bismuthiol-II. Russ. J. Inorg. Chem. 30, 805–807 (1985)

    Google Scholar 

  28. Suganuma, H., Shimizu, I., Hataye, I.: A solvent-extraction study of the hydrolysis of tracer concentrations of bismuth(III) in chloride solutions. Chem. Soc. Jpn. 60, 877–883 (1987)

    Article  CAS  Google Scholar 

  29. Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations, p. 499. Krieger, Malabar (1976)

    Google Scholar 

  30. Smith, R.M., Martell, A.E.: Critical Stability Constants, vol. 6: Second Supplement, Plenum Press, New York (1989), 643 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanpat Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, D., Yui, M., Schaef, H.T. et al. Thermodynamic Model for BiPO4(cr) and Bi(OH)3(am) Solubility in the Aqueous Na+–H+\(\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\)\(\mathrm{HPO}_{4}^{2-}\)\(\mathrm{PO}_{4}^{3-}\)–OH–Cl–H2O System. J Solution Chem 39, 999–1019 (2010). https://doi.org/10.1007/s10953-010-9561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9561-6

Keywords

Navigation